lampalupa.ru

Генератор реактивной мощности 2 квт. Генераторы Свободной Энергии

В современном глобальном мире экономия энергоресурсов выходит на первое место по своей актуальности. Экономия энергии, в некоторых странах, активно поддерживается государством не только для крупных потребителей, но и для обычных обывателей. Что в свою очередь делает компенсатор реактивной мощности актуальным для домашнего применения.

Компенсация реактивной мощности:

Многие потребители, прочитав в интернете о компенсации реактивной мощности крупными заводами и фабриками тоже задумываются о компенсации реактивной составляющей у себя дома. Тем более что сейчас существует большой выбор компенсирующих устройств, применять которые можно в обыкновенном быту. О том, действительно ли существует возможность, несколько сэкономить на этом у вас дома, вы можете прочитать в этой статье . А мы рассмотрим, возможность сделать такой компенсатор своими руками.

Отвечу сразу – да, возможно. Более того, это не только дешевое, но и довольно простое устройство, однако для понимания принципа его работы нужно знать, что такое реактивная мощность .

С курса школьной физики, и азов электротехники многим из вас уже известно общие сведенья о реактивной мощности, поэтому следует перейти сразу к практической части, однако невозможно этого сделать, миновав нелюбимую всеми математику.

Итак, для начала выбора элементов компенсатора необходимо рассчитать реактивную мощность нагрузки:

Поскольку такие составляющие как напряжение и ток мы можем померять, то фазовый сдвиг мы можем замерять только с помощью осциллографа, а он есть не у всех, так что придется идти другим путем:

Поскольку мы используем самое примитивное устройство из самих конденсаторов, нам необходимо рассчитать их емкость:

Где f – частота сети, а Х С – реактивное сопротивление конденсатора, оно равно:

Конденсаторы подбираются по току, напряжению, емкости, мощности соответственно, отталкиваясь от ваших потребностей. Желательно чтобы количество конденсаторов было больше единицы, чтобы возможно было экспериментально подобрать наиболее подходящую емкость для нужного потребителя.

В целях безопасности компенсирующее устройство должно подключатся через плавкий предохранитель или автомат (на случай слишком большого зарядного тока или КЗ).

Поэтому рассчитаем ток плавкого предохранителя (плавкой вставки):

Где і в – ток плавкой вставки (предохранителя), А; n – количество конденсаторов в устройстве, штук; Q k – номинальная мощность однофазного конденсатора, кВАр; U л – линейное напряжение, кВ (в нашем случае фазное без).

Если используем автомат:

После отключения компенсатора от сети на его зажимах будет напряжение, поэтому для быстрого разряда конденсаторов можно использовать резистор (лучше всего лампочку накаливания или неонку), подключив его параллельно устройству. Блок-схема и принципиальная схемы приведены ниже:


Блок-схема включения компенсатора реактивной мощности
Продемонстрирую более наглядно

В отверстие номер один подключается потребитель, а в отверстие номер два подключается компенсатор.


Принципиальная схема компенсатора реактивной мощности
Включение через предохранитель-автомат

Включается компенсирующее устройство всегда параллельно нагрузке. Данная хитрость уменьшает результирующий ток цепи, что уменьшает нагрев кабеля, соответственно к одной розетке может быть подключено большое количество потребителей или увеличена их мощность.

Электричество с каждым днем дорожает. И многие хозяева рано или поздно начинают задумываться об альтернативных источниках энергии. Предлагаем в качестве образцов безтопливные генераторы Тесла, Хендершота, Романова, Тариеля Канападзе, Смита, Бедини, принцип работы агрегатов, их схема и как сделать устройство своими руками.

Как сделать бестопливный генератор своими руками

Многие хозяева рано или поздно начинают задумываться об альтернативных источниках энергии. Предлагаем рассмотреть, что такое автономный бестопливный генератор Тесла, Хендершота, Романова, Тариеля Канападзе, Смита, Бедини, принцип работы агрегата, его схема и как сделать устройство своими руками.

Обзор генераторов

При использовании безтопливного генератора, двигатель внутреннего сгорания не требуется, поскольку устройство не должно преобразовывать химическую энергию топлива в механическую, для выработки электроэнергии. Данный электромагнитный прибор работает таким образом, что электричество, вырабатываемое генератором рециркулируют обратно в систему по катушке.

Фото — Генератор Капанадзе

Обычные электрогенераторы работают на основе:
1. Двигателя внутреннего сгорания, с поршнем и кольцами, шатуном, свечами, топливным баком, карбюратором, … и
2. С использованием любительских двигателей, катушек, диодов, AVR, конденсаторами и т.д.

Двигатель внутреннего сгорания в бестопливных генераторах заменен электромеханическим устройством, которое принимает мощность от генератора и используя такую ​​же, преобразует её в механическую энергию с эффективностью более 98%. Цикл повторяется снова и снова. Таким образом, концепция здесь заключается в том, чтобы заменить двигатель внутреннего сгорания, который зависит от топлива с электромеханическим устройством.

Фото — Схема генератора

Механическая энергия будет использоваться для приведения в действие генератора и получения тока, создаваемого генератором для питания электромеханического прибора. Генератор без топлива, который используется для замены двигателя внутреннего сгорания, сконструирован таким образом, что использует меньше энергии на выходе мощности генератора.

Видео: самодельный бестопливный генератор:

Скачать видео

Генератор Тесла

Линейный электрогенератор Тесла является основным прототипом рабочего прибора. Патент на него был зарегистрирован еще в 19 веке. Главным достоинством прибора является то, что его можно построить даже в домашних условиях с использованием солнечной энергии. Железная или стальная пластина изолируется внешними проводниками, после чего она размещается максимально высоко в воздухе. Вторую пластину размещаем в песке, земле или прочей заземленной поверхности. Провод запускается из металлической пластины, крепление производится с конденсатором на одной стороне пластины и второй кабель идет от основания пластины к другой стороне конденсатора.

Фото — Бестопливный генератор тесла

Такой самодельный бестопливный механический генератор свободной энергии электричества в теории полностью работающий, но для реального осуществление плана лучше использовать более распространенные модели, к примеру изобретателей Адамса, Соболева, Алексеенко, Громова, Дональда, Кондрашова, Мотовилова, Мельниченко и прочих. Собрать рабочий прибор можно даже при перепланировке какого-либо из перечисленных устройств, это выйдет дешевле, нежели самому все подсоединять.

Кроме энергии Солнца, можно использовать турбинные генераторы, которые работают без топлива на энергии воды. Магниты полностью покрывают вращающиеся металлические диски, также к прибору добавляется фланец и самозапитанный провод, что значительно снижает потери, благодаря этому данный теплогенератор работает более эффективно, чем солнечный. Из-за высоких асинхронных колебаний этот ватный бестопливный генератор страдает от вихревой электроэнергии, так что его нельзя использовать в автомобиле или для питания дома, т.к. на импульсе могут сгореть двигатели.

Фото — Бестопливный генератор Адамса

Но гидродинамический закон Фарадея также предлагает использовать простой вечный генератор. Его магнитный диск разделен на спиральные кривые, которые излучают энергию из центра к внешнему краю, уменьшая резонанс.

В данной высоковольтной электрической системе, если есть два витка рядом расположенных, электроток передвигается по проводу, ток, проходящий через петлю, будет создавать магнитное поле, которое будет излучаться против тока, проходящего через вторую петлю, создавая сопротивление.

Как сделать генератор

Существует два варианты выполнения работы:


  1. Сухой способ;

  2. Мокрый или масляный;

Мокрый метод использует аккумулятор, в то время как сухой метод обходится без батареи.

Пошаговая инструкция как собрать электрический бестопливный генератор. Чтобы сделать мокрый генератор бестопливного типа потребуется несколько компонентов:


  • аккумулятор,

  • зарядное устройство подходящего калибра,

  • Трансформатор переменного тока

  • Усилитель мощности.

Подключите трансформатор переменного тока в постоянную сеть к Вашей батарее и усилителю мощности, а затем подсоедините в схему зарядное устройство и датчик для расширения, далее его нужно подключить обратно в батарею. Зачем нужны эти компоненты:


  1. Батарея используется для хранения и накопления энергии;

  2. Трансформатор используется для создания постоянных сигналов ток;

  3. Усилитель поможет увеличить подачу тока, потому что мощность от аккумулятора только 12В или 24В, в зависимости от батареи.

  4. Зарядное устройство необходимо для бесперебойной работы генератора.

Фото — Альтернативный генератор

Сухой генератор работает на конденсаторах. Чтобы собрать такой прибор нужно подготовить:


  • Прототип генератора

  • Трансформатор.

Это производство является наиболее совершенным способом сделать генератор, потому что его работа может длиться годами, как минимум 3 года без подзарядки. Эти два компонента нужно объединить при помощи незатухающих специальных проводников. Мы рекомендуем использовать сварку, чтобы создать наиболее прочное соединение. Для контроля работы используется динатрон, просмотрите видео как правильно соединять проводники.

Устройства на трансформаторе более дорогие, но являются гораздо эффективнее, нежели аккумуляторные. Как прототип Вы можете взять модель free energy, kapanadze, torrent, марка Хмельник. Такие приборы можно будет применять как мотор для электромобиля.

Обзор цен

На отечественному рынке самыми доступными считаются генераторы производства одесских изобретателей, БТГи БТГР. Купить такие бестопливные генераторы можно в специализированном магазине электротехники, интернет-магазинах, от завода-производителя (цена зависит от марки прибора и точки, где осуществляется продажа).

Бестопливные новые генераторы на магните Вега на 10 кВт обойдутся в среднем от 30 000 рублей.

Одесского завода — 20 000 рублей.

Очень популярные Андрус обойдутся хозяевам минимум в 25 000 рублей.

Импортные приборы марки Феррите (аналог устройства Стивена Марка) являются наиболее дорогими на отечественном рынке и стоят от 35 000 рублей, в зависимости от мощности.

Электронное устройство под условным названием г енератор обратной мощности просто включается в любую розетку, никакие вмешательства в электропроводку и заземление не нужны. Потребители питаются как обычно, устройство им не мешает. Но индукционный счетчик (с диском) при этом считает в обратную сторону, а электронные и электронно-механические останавливаются, что тоже неплохо. Устройство приводит к циркуляции мощности в двух направлениях через счетчик. В прямом направлении за счет высокочастотной модуляции тока осуществляется частичный учет, а в обратном – полный. Поэтому счетчик воспринимает работу устройства как источник энергии, питающий из Вашей квартиры всю электрическую сеть. Счетчик при этом считает в обратную сторону со скоростью, равной разности полного и частичного учета. Если мощность потребителей окажется большей, чем обратная мощность устройства, то счетчик будет вычитать последнюю из мощности потребителей. Собрать и настроить устройство несложно. Характерные особенности. Не нужно никакое вмешательство в электропроводку. Вся электропроводка остается нетронутой. Заземление не нужно. Устройство эффективно, как для однофазных счетчиков при напряжении 220В, так и для трехфазных 380В. Потребители с генератором не связаны. Устройство защитного отключения (УЗО) не мешает работе устройства.

Один из вариантов принципиальной схемы генератора обратной мощности для ознакомления представлен ниже. Принципиальная в развернутом виде и описание находятся в разделе полезностей.


Простыми словами принцип действия генератора обратной мощности можно описать так:

  • Заряжаем некую большую емкость до удвоееного сетевого напряжения. Заряжем ее короткими импульсами. Электросчетчик на них не реагиурет, тоесть конденсатор зарядился от сети безучетно.
  • Теперь конденсатор нужно разрядить, но когда, например положительная полуволна. Ток будет течь из конденсатора (на нем удвоенное напряжение) Импульс разряда получается длиннее, на который счетчик уже реагирует и крутить будет в обратную сторону, ведь ток течет обрато в сеть.
  • Делаем тоже для отрицательной полуволны. В результате имеем пресловутый генератор обратной мощности.

Примечание: Последний рабочий вариант схемы генератора обратной мощности с подробным описанием по сборке и настройке

. Генератор обратной мощности для электросчетчика схема

Генератор реактивной мощности 1 Квт - Конструкции средней сложности - Схемы для начинающих

Генератор реактивной мощности 1 Квт

Устройство предназначено для отмотки показаний индукционных электросчетчиков без изменения их схем включения. Применительно к электронным и электронно-механическим счетчикам, в конструкцию которых заложена неспособность к обратному отсчету показаний, устройство позволяет полностью остановить учет до уровня реактивной мощности генератора. При указанных на схеме элементах устройство рассчитано на номинальное напряжение сети 220 В и мощность отмотки 1 кВт. Применение других элементов позволяет соответственно увеличить мощность.

Теоретические основы

Принципиальная схема приведена на рис.1. Основными элементами устройства являются интегратор, представляющий собой резистивный мост R1-R4 и конденсатор С1, формирователь импульсов (стабилитроны D1, D2 и резисторы R5, R6), логический узел (элементы DD1.1, DD2.1, DD2.2), тактовый генератор (DD2.3, DD2.4), усилитель (Т1, Т2), выходной каскад (С2, Т3, Br1) и блок питания на трансформаторе Tr1. Фронт сигнала на входе 1 DD1.1 совпадает с началом положительной полуволны сетевого напряжения, а спад – с началом отрицательной полуволны. Фронт сигнала на входе 2 DD1.1 совпадает с началом положительной полуволны интеграла сетевого напряжения, а спад - с началом отрицательной полуволны. Таким образом, эти сигналы представляют собой прямоугольные импульсы, синхронизированные сетью и смещенные по фазе относительно друг друга на угол p/2. Сигнал, соответствующий напряжению сети, снимается с резистивного делителя R1, R3, ограничивается до уровня 5 В с помощью резистора R5 и стабилитрона D2, затем через гальваническую развязку на оптроне ОС1 подается на логический узел. Аналогично формируется сигнал, соответствующий интегралу напряжения сети. Процесс интегрирования обеспечивается процессами заряда и разряда конденсатора С1. Логический узел служит для формирования сигналов управления мощным ключевым транзистором Т3 выходного каскада. Алгоритм управления синхронизирован выходными сигналами интегратора. На основе анализа этих сигналов, на выходе 4 элемента DD2.2 формируется сигнал управления выходным каскадом. В необходимые моменты времени логический узел модулирует выходной сигнал сигналом задающего генератора, обеспечивая высокочастотное энергопотребление. Для обеспечения импульсного процесса заряда накопительного конденсатора С2 служит задающий генератор на логических элементах DD2.3 и DD2.4. Он формирует импульсы частотой 2 кГц амплитудой 5 В. Частота сигнала на выходе генератора и скважность импульсов определяются параметрами времязадающих цепей С3-R20 и C4-R21. Эти параметры могут подбираться при настройке для обес-печения наибольшей погрешности учета электроэнергии, потребляемой устройством. Сигнал управления выходным каскадом через гальваническую развязку на оптроне ОС3 поступает на вход двухкаскадного усилителя на транзисторах Т1 и Т2. Основное назначение этого усилителя – полное открытие с вводом в режим насыщения транзистора Т3 выходного каскада и надежное запира-ние его в моменты времени, определяемые логическим узлом. Только ввод в насыщение и полное закрытие позволят транзистору Т3 функционировать в тяжелых условиях работы выходного каскада. Если не обеспечить надежное полное открытие и закрытие Т3, причем за минимальное время, то он выходит из строя от перегрева в течение нескольких секунд. Блок питания построен по классической схеме. Необходимость применения двух каналов питания продиктована особенностью режима выходного каскада. Обеспечить надежное открывание Т3 удается только при напряжении питания не менее 12В, а для питания микросхем необходимо стабилизиро-ванное напряжение 5В. При этом общим проводом можно лишь условно считать отрицательный полюс 5- вольтового выхода. Он не должен заземляться или иметь связь с проводами сети. Главным требованием к блоку питания является возможность обеспечить ток до 2 А на выходе 36 В. Это необходимо для ввода мощного ключевого транзистора выходного каскада в режим насыщения в открытом состоянии. В противном случае на нем будет рассеиваться большая мощность, и он выйдет из строя.

Детали и конструкция

Микросхемы могут применяться любые: 155, 133, 156 и других серий. Не рекомендуется применение микросхем на основе МОП - структур, так как они более подвержены влиянию наводок от работы мощного ключевого каскада. Ключевой транзистор Т3 обязательно устанавливается на радиаторе площадью не менее 200 см2. Для транзистора Т2 применяется радиатор площадью не менее 50 см2. Из соображений безопасности в качестве радиаторов не следует использовать металлический корпус устройства. Накопительный конденсатор С2 может быть только неполярным. Применение электролитического конденсатора не допускается. Конденсатор должен быть рассчитан на напряжение не менее 400В. Резисторы: R1 – R4, R15 типа МЛТ-2; R18, R19 - проволочные мощностью не менее 10 Вт; ос-тальные резисторы типа МЛТ-0.25. Трансформатор Tr1 – любой мощностью около 100 Вт с двумя раздельными вторичными обмотками. Напряжение обмотки 2 должно быть 24 - 26 В, напряжение обмотки 3 должно быть 4 - 5 В. Главное требование – обмотка 2 должна быть рассчитана на ток 2 – 3 А. Обмотка 3 маломощная, ток потреб-ления от нее составит не более 50 мА.

При наладке схемы соблюдайте осторожность! Помните, что не вся низковольтная часть схемы имеет гальваническую развязки от электрической сети! Не рекомендуется в качестве радиатора для выходного транзистора использовать металлический корпус устройства. Применение плавких предохранителей – обязательно! Накопительный конденсатор работает в предельном режиме, поэтому перед включением устройства его нужно разместить в прочном металлическом корпусе. Применение электролитического (оксидного) конденсатора не допускается! Низковольтный блок питания проверяют отдельно от других модулей. Он должен обеспечивать ток не менее 2 А на выходе 36 В, а также 5 В для питания системы управления. Интегратор проверяют двулучевым осциллографом. Для этого общий провод осциллографа соединяют с нулевым проводом электросети (N), провод первого канала подсоединяют к точке соединения резисторов R1 и R3, а провод второго канала – к точке соединения R2 и R4. На экране должны быть видны две синусоиды частотой 50 Гц и амплитудой около 150 В каждая, смещенные между собой по оси времени на угол p/2. Далее проверяют наличие сигналов на выходах ограничителей, подключая ос-циллограф параллельно стабилитронам D1 и D2. Для этого общий провод осциллографа соединяют с точкой N сети. Сигналы должны иметь правильную прямоугольную форму, частоту 50 Гц, амплитуду около 5 В и также должны быть смещены между собой на угол p/2 по оси времени. Допускается нарастание и спад импульсов в течение не более 1мс. Если фазосмещение сигналов отличается от p/2, то его корректируют подбирая конденсатор С1. Крутизну фронта и спада импульсов можно изменять, подбирая сопротивления резисторов R5 и R6. Эти сопротивления должны быть не менее 8 кОм, в противном случае ограничители уровня сигнала будут оказывать влияние на качество процесса интегрирования, что в итоге будет приводить к перегрузке транзистора выходного каскада. Затем налаживают генератор, отключив силовую часть схемы от электросети. Генератор должен формировать импульсы амплитудой 5 В и частотой около 2 кГц. Скважность импульсов приблизительно 1/1. При необходимости для этого подбирают конденсаторы С3, С4 или резисторы R20, R21. Логический узел при условии правильного монтажа наладки не требует. Желательно только убедиться с помощью осциллографа, что на входах 1 и 2 элемента DD1.1 есть периодические сигналы прямоугольной формы, смещенные относительно друг друга по оси времени на угол p/2. На выходе 4 DD2.2 должны периодически через каждые 10 мс формироваться пачки импульсов частотой 2 кГц, длительность каждой пачки 5 мс. Настройка выходного каскада заключается в установке тока базы транзистора Т3 на уровне не менее 1.5 -2 А. Это необходимо для насыщения этого транзистора в открытом состоянии. Для настройки рекомендуется отключить выходной каскад с усилителем от логического узла (отсоединить резистор R22 от выхода элемента DD2.2), и управлять каскадом подавая напряжение +5 В на отсоединенный кон-такт резистора R22 непосредственно с блока питания. Вместо конденсатора С1 временно включают нагрузку в виде лампы накаливания мощностью 100 Вт. Ток базы Т3 устанавливают подбирая сопротивление резистора R18. Для этого может потребоваться еще подбор R13 и R15 усилителя. После зажига-ния оптрона ОС3, ток базы транзистора Т3 должен уменьшаться почти до нуля (несколько мкА). Такая настройка обеспечивает наиболее благоприятный тепловой режим работы мощного ключевого транзистора выходного каскада. После настройки всех элементов восстанавливают все соединения в схеме и проверяют работу схемы в сборе. Первое включение рекомендуется выполнить с уменьшенным значением емкости конденсатора С2 приблизительно до 1 мкФ. После включения устройства дайте ему поработать несколько минут, обращая особое внимание на температурный режим ключевого транзистора. Если все в порядке – можете увеличивать емкость конденсатора С2. Увеличивать емкость до номинального значения реко-мендуется в несколько этапов, каждый раз проверяя температурный режим. Мощность отмотки в первую очередь зависит от емкости конденсатора С2. Для увеличения мощности нужен конденсатор большей емкости. Предельное значение емкости определяется величиной импульсного тока заряда. О его величине можно судить, подключая осциллограф параллельно резистору R19. Для транзисторов КТ848А он не должен превышать 20 А. Если требуется увеличить мощность отмотки, придется использовать более мощные транзисторы, а также диоды Br1. Но лучше для этого использовать другую схему с выходным каскадом на четырех транзисторах. Не рекомендуется использовать слишком большую мощность отмотки. Как правило, 1 кВт вполне достаточно. Если устройство работает совместно с другими потребителями, счетчик при этом вычитает из их мощности мощность устройства, но электропроводка будет загружена реактивной мощностью. Это нужно учитывать, чтобы не вывести из строя электропроводку.

cxema.my1.ru

Генератор обратной мощности – для чего он необходим

Генератор обратной мощности – для чего он необходим

Немногие, наверное, вспомнят, как раньше отматывали показания счетчика электроэнергии. Делали это трансформатором, который необходимо было заземлить. Заземлителем обычно служила батарея или другая коммуникация. Это было очень опасно для жизни. Теперь же никаких посторонних вмешательств в электрическую проводку и заземляющих проводников. Включил в обычную розетку генератор обратной мощности и жди результата. Обычный электросчетчик с диском – мотает цифры в обратную сторону, современный электронный счетчик – просто останавливается.

Расчет мощности по показаниям электросчетчика

Приборы для учета потребляемой энергии не всегда верно отсчитывают используемую мощность электронных компонентов. Для того, чтобы проверить работу электросчетчика необходимо:

  • иметь возможность осмотреть устройство. Электросчетчик может находиться в квартире или на лестничной площадке;
  • на передней панели указан класс точности прибора – это допустимая величина погрешности в %. Например, если класс точности 3, то устройство за использованный 100Вт/ч посчитает показатель – от 97 до 103 Вт/ч. Это будет нормой рассчитанного электричества для данного счетчика;
  • для проверки работы включите в сеть только одну лампу накаливания на один час, и смотрите за показаниями на электросчетчике.

Если Ваш прибор для учета электроэнергии не оправдал испытания – следует подать заявку на его замену в Энергонадзор.

Как рассчитать мощность электрического тока

Электрический счетчик рассчитывает не потребляемую электронными компонентами мощность, а работу, проделанную электрическим током, а правильнее – израсходованную при этом энергию. Рассчитать мощность электросчетчика можно двумя методами:

  • посчитать количество оборотов за единицу времени и сравнить этот показатель цифрой, указанной на счетчике. Например, если стоит показатель 300 , это значит, что диск прибора совершает 300 оборотов за один час. Значит за 10 минут он должен совершить 50 оборотов;
  • и наоборот: задаем количество оборотов и смотрим, за какое время счетчик проделает эту работу.

Расход электроэнергии

ogodom.ru

Генератор обратной мощности или рекуператор мощностью до 1 кВт. - 16 Февраля 2011

В связи с решением ведущей электрокомпании в нашей стране поднять стоимость киловатта электроэнергии до 10.74 сантима (около 0.2 USD/кВт) с 1 апреля, приходится прибегать к методам, позволяющим снизить показания приборов учёта до разумного минимума. Для этой цели и служат приборы, называемые генераторами обратной мощности или рекуператорами. В поисках на просторах Интернета удалось найти схемы и описания этих устройств, схема и описание одного из них приводится ниже.


Устройство предназначено для отмотки показаний индукционных электросчетчиков без изменения их схем включения. Применительно к электронным и электронно-механическим счетчикам, в конструкцию которых заложена неспособность к обратному отсчету показаний, устройство позволяет полностью остановить учет до уровня реактивной мощности генератора. При указанных на схеме элементах устройство рассчитано на номинальное напряжение сети 220 В и мощность отмотки 1 кВт. Применение других элементов позволяет соответственно увеличить мощность.

Устройство, собранное по предлагаемой схеме, просто вставляется в розетку и счетчик начинает считать в обратную сторону. Вся электропроводка остается нетронутой. Заземление не нужно. Теоретические основы

Работа устройства основана на том, что датчики тока электросчетчиков, в том числе и электронных, содержат входной индукционный преобразователь, имеющий низкую чувствительность к токам высокой частоты. Этот факт позволяет внести значительную отрицательную погрешность в учет, если потребление осуществлять импульсами высокой частоты. Другая особенность – счетчик является реле направления мощности, т.е если с помощью какого-либо источника (например дизель-генератора) питать саму электрическую сеть, то счетчик вращается в обратную сторону.

Перечисленные факторы позволяют создать имитатор генератора. Основным элементом такого устройства является конденсатор соответствующей емкости. Конденсатор в течение четверти периода сетевого напряжения заражают от сети импульсами высокой частоты. При определенном значении частоты (зависит от характеристик входного преобразователя счетчика), счетчик учитывает только четверть от фактически потребленной энергии. Во вторую четверть периода конденсатор разряжают обратно в сеть напрямую, без высокочастотной коммутации. Счетчик учитывает всю энергию, питающую сеть. Фактически энергия заряда и разряда конденсатора одинакова, но полностью учитывается только вторая, создавая имитацию генератора, питающего сеть. Счетчик при этом считает в обратную сторону со скоростью, пропорциональной разности в единицу времени энергии разряда и учтенной энергии заряда. Электронный счетчик будет полностью остановлен и позволит безучетно потреблять энергию, не более значения энергии разряда. Если мощность потребителя окажется большей, то счетчик будет вычитать из нее мощность устройства.

Фактически устройство приводит к циркуляции реактивной мощности в двух направлениях через счетчик, в одном из которых осуществляется полный учет, а в другом – частичный.

Основными элементами устройства являются интегратор, представляющий собой резистивный мост R1-R4 и конденсатор С1, формирователь импульсов (стабилитроны D1, D2 и резисторы R5, R6), логический узел (элементы DD1.1, DD2.1, DD2.2), тактовый генератор (DD2.3, DD2.4), усилитель (Т1, Т2), выходной каскад (С2, Т3, Br1) и блок питания на трансформаторе Tr1.

Интегратор предназначен для выделения из сетевого напряжения сигналов, синхронизирующих работу логического узла. Это прямоугольные импульсы уровня ТТЛ на входах 1 и 2 элемента DD1.1.

Фронт сигнала на входе 1 DD1.1 совпадает с началом положительной полуволны сетевого напряжения, а спад – с началом отрицательной полуволны. Фронт сигнала на входе 2 DD1.1 совпадает с началом положительной полуволны интеграла сетевого напряжения, а спад - с началом отрицательной полуволны. Таким образом, эти сигналы представляют собой прямоугольные импульсы, синхронизированные сетью и смещенные по фазе относительно друг друга на угол /2.

Сигнал, соответствующий напряжению сети, снимается с резистивного делителя R1, R3, ограничивается до уровня 5 В с помощью резистора R5 и стабилитрона D2, затем через гальваническую развязку на оптроне ОС1 подается на логический узел. Аналогично формируется сигнал, соответствующий интегралу напряжения сети. Процесс интегрирования обеспечивается процессами заряда и разряда конденсатора С1.

Логический узел служит для формирования сигналов управления мощным ключевым транзистором Т3 выходного каскада. Алгоритм управления синхронизирован выходными сигналами интегратора. На основе анализа этих сигналов, на выходе 4 элемента DD2.2 формируется сигнал управления выходным каскадом. В необходимые моменты времени логический узел модулирует выходной сигнал сигналом задающего генератора, обеспечивая высокочастотное энергопотребление. Для обеспечения импульсного процесса заряда накопительного конденсатора С2 служит задающий генератор на логических элементах DD2.3 и DD2.4. Он формирует импульсы частотой 2 кГц амплитудой 5 В. Частота сигнала на выходе генератора и скважность импульсов определяются параметрами времязадающих цепей С3-R20 и C4-R21. Эти параметры могут подбираться при настройке для обеспечения наибольшей погрешности учета электроэнергии, потребляемой устройством.

Сигнал управления выходным каскадом через гальваническую развязку на оптроне ОС3 поступает на вход двухкаскадного усилителя на транзисторах Т1 и Т2. Основное назначение этого усилителя – полное открытие с вводом в режим насыщения транзистора Т3 выходного каскада и надежное запирание его в моменты времени, определяемые логическим узлом. Только ввод в насыщение и полное закрытие позволят транзистору Т3 функционировать в тяжелых условиях работы выходного каскада. Если не обеспечить надежное полное открытие и закрытие Т3, причем за минимальное время, то он выходит из строя от перегрева в течение нескольких секунд.

Блок питания построен по классической схеме. Необходимость применения двух каналов питания продиктована особенностью режима выходного каскада. Обеспечить надежное открывание Т3 удается только при напряжении питания не менее 12В, а для питания микросхем необходимо стабилизированное напряжение 5В. При этом общим проводом можно лишь условно считать отрицательный полюс 5-вольтового выхода. Он не должен заземляться или иметь связь с проводами сети. Главным требованием к блоку питания является возможность обеспечить ток до 2 А на выходе 36 В. Это необходимо для ввода мощного ключевого транзистора выходного каскада в режим насыщения в открытом состоянии. В противном случае на нем будет рассеиваться большая мощность, и он выйдет из строя.

Детали и конструкция

Микросхемы могут применяться любые: 155, 133, 156 и других серий. Не рекомендуется применение микросхем на основе МОП - структур, так как они более подвержены влиянию наводок от работы мощного ключевого каскада. Ключевой транзистор Т3 обязательно устанавливается на радиаторе площадью не менее 200 см2. Для транзистора Т2 применяется радиатор площадью не менее 50 см2. Из соображений безопасности в качестве радиаторов не следует использовать металлический корпус устройства.

Накопительный конденсатор С2 может быть только неполярным. Применение электролитического конденсатора не допускается. Конденсатор должен быть рассчитан на напряжение не менее 400В. Резисторы: R1 – R4, R15 типа МЛТ-2; R18, R19 - проволочные мощностью не менее 10 Вт; остальные резисторы типа МЛТ-0.25. Трансформатор Tr1 – любой мощностью около 100 Вт с двумя раздельными вторичными обмотками. Напряжение обмотки 2 должно быть 24 - 26 В, напряжение обмотки 3 должно быть 4 - 5 В. Главное требование – обмотка 2 должна быть рассчитана на ток 2 – 3 А. Обмотка 3 маломощная, ток потребления от нее составит не более 50 мА. Устройство в целом собирают в каком-либо корпусе. Очень удобно (особенно в целях конспирации) использовать для этого корпус от бытового стабилизатора напряжения, которые в недалеком прошлом широко использовались для питания ламповых телевизоров.

При наладке схемы соблюдайте осторожность! Помните, что не вся низковольтная часть схемы имеет гальваническую развязки от электрической сети! Не рекомендуется в качестве радиатора для выходного транзистора использовать металлический корпус устройства. Применение плавких предохранителей – обязательно! Накопительный конденсатор работает в предельном режиме, поэтому перед включением устройства его нужно разместить в прочном металлическом корпусе.

Применение электролитического (оксидного) конденсатора не допускается!

Низковольтный блок питания проверяют отдельно от других модулей. Он должен обеспечивать ток не менее 2 А на выходе 36 В, а также 5 В для питания системы управления. Интегратор проверяют двулучевым осциллографом.

Для этого общий провод осциллографа соединяют с нулевым проводом электросети (N), провод первого канала подсоединяют к точке соединения резисторов R1 и R3, а провод второго канала – к точке соединения R2 и R4. На экране должны быть видны две синусоиды частотой 50 Гц и амплитудой около 150 В каждая, смещенные между собой по оси времени на угол /2.

Далее проверяют наличие сигналов на выходах ограничителей, подключая осциллограф параллельно стабилитронам D1 и D2. Для этого общий провод осциллографа соединяют с точкой N сети. Сигналы должны иметь правильную прямоугольную форму, частоту 50 Гц, амплитуду около 5 В и также должны быть смещены между собой на угол /2 по оси времени. Допускается нарастание и спад импульсов в течение не более 1мс. Если фазосмещение сигналов отличается от /2, то его корректируют подбирая конденсатор С1. Крутизну фронта и спада импульсов можно изменять, подбирая сопротивления резисторов R5 и R6.

Эти сопротивления должны быть не менее 8 кОм, в противном случае ограничители уровня сигнала будут оказывать влияние на качество процесса интегрирования, что в итоге будет приводить к перегрузке транзистора выходного каскада. Затем налаживают генератор, отключив силовую часть схемы от электросети. Генератор должен формировать импульсы амплитудой 5 В и частотой около 2 кГц. Скважность импульсов приблизительно 1/1. При необходимости для этого подбирают конденсаторы С3, С4 или резисторы R20, R21.

Логический узел при условии правильного монтажа наладки не требует. Желательно только убедиться с помощью осциллографа, что на входах 1 и 2 элемента DD1.1 есть периодические сигналы прямоугольной формы, смещенные относительно друг друга по оси времени на угол /2. На выходе 4 DD2.2 должны периодически через каждые 10 мс формироваться пачки импульсов частотой 2 кГц, длительность каждой пачки 5 мс.

Настройка выходного каскада заключается в установке тока базы транзистора Т3 на уровне не менее 1.5 -2 А. Это необходимо для насыщения этого транзистора в открытом состоянии. Для настройки рекомендуется отключить выходной каскад с усилителем от логического узла (отсоединить резистор R22 от выхода элемента DD2.2), и управлять каскадом подавая напряжение +5 В на отсоединенный контакт резистора R22 непосредственно с блока питания. Вместо конденсатора С1 временно включают нагрузку в виде лампы накаливания мощностью 100 Вт. Ток базы Т3 устанавливают подбирая сопротивление резистора R18. Для этого может потребоваться еще подбор R13 и R15 усилителя. После зажигания оптрона ОС3, ток базы транзистора Т3 должен уменьшаться почти до нуля (несколько мкА).

Такая настройка обеспечивает наиболее благоприятный тепловой режим работы мощного ключевого транзистора выходного каскада.

После настройки всех элементов восстанавливают все соединения в схеме и проверяют работу схемы в сборе. Первое включение рекомендуется выполнить с уменьшенным значением емкости конденсатора С2 приблизительно до 1 мкФ. После включения устройства дайте ему поработать несколько минут, обращая особое внимание на температурный режим ключевого транзистора. Если все в порядке – можете увеличивать емкость конденсатора С2. Увеличивать емкость до номинального значения рекомендуется в несколько этапов, каждый раз проверяя температурный режим.

Мощность отмотки в первую очередь зависит от емкости конденсатора С2. Для увеличения мощности нужен конденсатор большей емкости. Предельное значение емкости определяется величиной импульсного тока заряда. О его величине можно судить, подключая осциллограф параллельно резистору R19. Для транзисторов КТ848А он не должен превышать 20 А.

Если требуется увеличить мощность отмотки, придется использовать более мощные транзисторы, а также диоды Br1. Но лучше для этого использовать другую схему с выходным каскадом на четырех транзисторах. Не рекомендуется использовать слишком большую мощность отмотки. Как правило, 1 кВт вполне достаточно. Если устройство работает совместно с другими потребителями, счетчик при этом вычитает из их мощности мощность устройства, но электропроводка будет загружена реактивной мощностью.

Это нужно учитывать, чтобы не вывести из строя электропроводку.

Описание этого устройства взято отсюда:

Если кто-нибудь повторит или повторяет данное устройство, то жду ваших отзывов, коментариев и замечаний по работе этого девайса.

А вот здесь - критика принципа работы данного устройства:

yl2gl.ucoz.net

Генератор реактивной мощности 2 кВт CAVR.ru

Устройство предназначено для отмотки показаний индукционных электросчетчиков без изменения их схем включения. Применительно к электронным и электронно-механическим счетчикам, в конструкцию которых заложена неспособность к обратному отсчету показаний, устройство позволяет полностью остановить учет до мощности потребления в несколько кВт. При указанных на схемах элементах устройство рассчитано на номинальное напряжение сети 220 В и мощность отмотки 2 кВт. Применение других элементов позволяет соответственно увеличить мощность.

Устройство, собранное по предлагаемой схеме, просто вставляется в розетку и счетчик начинает считать в обратную сторону. Вся электропроводка остается нетронутой. Заземление не нужно.

Теоретические основы

Работа устройства основана на том, что датчики тока электросчетчиков, в том числе и электронных, содержат входной индукционный преобразователь, имеющий низкую чувствительность к токам высокой частоты. Этот факт позволяет внести значительную отрицательную погрешность в учет, если потребление осуществлять импульсами высокой частоты. Другая особенность – счетчик является реле направления мощности, т.е если с помощью какого-либо источника (например дизель-генератора) питать саму электрическую сеть, то счетчик вращается в обратную сторону.

Перечисленные факторы позволяют создать имитатор генератора. Основным элементом такого устройства является конденсатор соответствующей емкости. Конденсатор в течение четверти периода сетевого напряжения заражают от сети импульсами высокой частоты. При определенном значении частоты (зависит от характеристик входного преобразователя счетчика), счетчик учитывает только четверть от фактически потребленной энергии. Во вторую четверть периода конденсатор разряжают обратно в сеть напрямую, без высокочастотной коммутации. Счетчик учитывает всю энергию, питающую сеть. Фактически энергия заряда и разряда конденсатора одинакова, но полностью учитывается только вторая, создавая имитацию генератора, питающего сеть. Счетчик при этом считает в обратную сторону со скоростью, пропорциональной разности в единицу времени энергии разряда и учтенной энергии заряда. Электронный счетчик будет полностью остановлен и позволит безучетно потреблять энергию, не более значения энергии разряда. Если мощность потребителя окажется большей, то счетчик будет вычитать из нее мощность устройства.

Фактически устройство приводит к циркуляции реактивной мощности в двух направлениях через счетчик, в одном из которых осуществляется полный учет, а в другом – частичный.

Принципиальная схема устройства

Устройство состоит из четырех модулей, принципиальные схемы которых приведены на рис.1 - 4.

Рис.1. Интегратор.

Рис.2. Система управления.

Рис.3. Рекуператор.

Рис.4. Блок питания.

Интегратор (рис.1) предназначен для выделения из сетевого напряжения сигналов, синхронизирующих работу других модулей. Это прямоугольные импульсы уровня ТТЛ на выходах С1 и С2.

Фронт сигнала С1 совпадает с началом положительной полуволны сетевого напряжения, а спад – с началом отрицательной полуволны. Фронт сигнала С2 совпадает с началом положительной полуволны интеграла сетевого напряжения, а спад - с началом отрицательной полуволны. Таким образом, сигналы С1 и С2 представляют собой прямоугольные импульсы, синхронизированные сетью и смещенные по фазе относительно друг друга на угол /2.

Сигнал, соответствующий напряжению сети, снимается с резистивного делителя R1.1, R1.3, ограничивается до уровня 5 В с помощью резистора R1.5 и стабилитрона D1.2, затем через узел гальванической развязки на оптроне ОС1.1 подается на другие модули. Аналогично формируется сигнал, соответствующий интегралу напряжения сети. Процесс интегрирования обеспечивается процессами заряда и разряда конденсатора С1.1.

Система управления (рис.2) служит для формирования сигналов управления мощными ключевыми транзисторами рекуператора (рис.3). Алгоритм управления синхронизирован сигналами С1 и С2, получаемыми с интегратора. Для обеспечения импульсного процесса протекания энергопотребления устройством служит задающий генератор на логических элементах DD2.3.4 и DD2.3.5. Он формирует импульсы частотой 2 кГц амплитудой 5 В. Частота сигнала на выходе генератора и скважность импульсов определяются параметрами времязадающих цепей С2.1-R2.1 и C2.2-R2.2. Эти параметры могут подбираться при настройке для обеспечения наибольшей погрешности учета электроэнергии, потребляемой устройством.

Логический блок системы на основе анализа сигналов С1 и С2 формирует сигналы U1 – U4, каждый из которых управляет соответствующим плечом рекуператора. В необходимые моменты времени логический блок модулирует соответствующий выходной сигнал сигналом задающего генератора, обеспечивая высокочастотное энергопотребление.

Рекуператор (рис.3) представляет собой два одинаковых канала, каждый из которых обеспечивает подключение к электрической сети отдельного накопительного конденсатора С3.1 или С3.2. Канал управления конденсатором С3.1 состоит из мощных транзисторов Т3.2, Т3.6, выпрямительных диодов D3.1, D3.3, усилительных каскадов на транзисторах Т3.1, Т3.3 и узлов гальванической развязки от электросети на оптронах ОС3.1, ОС3.3. Канал управления конденсатором С3.2 построен аналогично. За счет алгоритма работы системы управления обеспечивается работа конденсатора С3.1 на положительной полуволне сетевого напряжения, а С3.2 – на отрицательной.

Блок питания (рис.4) построен по классической схеме. Необходимость применения трех каналов питания продиктована особенностью связи каскадов рекуператора с электрической сетью. При этом общим проводом можно лишь условно считать отрицательный полюс 5-вольтового выхода. Он не должен заземляться или иметь связь с проводами сети. Главным требованием к блоку питания является возможность обеспечить ток до 3 А на выходах 16 В. Это необходимо для ввода мощных ключевых транзисторов в режим насыщения в открытом состоянии. В противном случае на них будет рассеиваться большая мощность, и они выйдут из строя.

Детали и конструкция

Микросхемы могут применяться любые: 133, 156, 555 и других серий. Не рекомендуется применение микросхем на основе МОП - структур, так как они более подвержены влиянию наводок от работы мощных ключевых каскадов.

Ключевые транзисторы рекуператора обязательно устанавливаются на радиаторах. Лучше для каждого транзистора использовать отдельный радиатор площадью не менее 150 см2. Для транзисторов Т3.1, Т3.3, Т3.5, Т3.7 необходимы радиаторы площадью не менее 40 см2. Из соображений безопасности не следует использовать металлический корпус устройства в качестве радиатора для транзисторов.

Для всех высоковольтных конденсаторов на схеме обозначено их номинальное напряжение. Конденсаторы на более низкое напряжение применять нельзя. Конденсатор С1.1 может быть только неполярным. В этом узле применение электролитического конденсатора не допускается. Схема рекуператора специально составлена для использования в качестве С3.1 и С3.2 дешевых электролитических конденсаторов, но надежнее и долговечнее всё-таки применение неполярных конденсаторов.

Резисторы: R1.1 – R1.4 типа МЛТ-2; R3.17 - R3.22 проволочные мощностью не менее 10 Вт; остальные резисторы типа МЛТ-0.25.

Трансформатор Tr1 – любой маломощный с двумя раздельными вторичными обмотками на 12 В и одной на 5 В. Главное требование – обеспечить при номинальном напряжении 12 В ток каждой вторичной обмотки не менее 3 А.

Все модули устройства следует смонтировать на отдельных платах для облегчения последующей настройки. Устройство в целом собирают в каком-либо корпусе. Очень удобно (особенно в целях конспирации) использовать для этого корпус от бытового стабилизатора напряжения, которые в недалеком прошлом широко использовались для питания ламповых телевизоров.

При наладке схемы соблюдайте осторожность! Помните, что не вся низковольтная часть схемы имеет гальваническую развязки от электрической сети! Не рекомендуется в качестве радиатора для транзисторов использовать металлический корпус устройства. Применение плавких предохранителей – обязательно! Накопительные конденсаторы работают в предельном режиме, поэтому перед включением устройства их нужно разместить в прочном металлическом корпусе.

Низковольтный блок питания проверяют отдельно от других модулей. Он должен обеспечивать ток не менее 3 А на выходах 16 В, а также 5 В для питания системы управления.

Затем налаживают генератор, отключив силовую часть схемы от электросети. Генератор должен формировать импульсы амплитудой 5 В и частотой около 2 кГц. Скважность импульсов приблизительно 1/1. При необходимости для этого подбирают конденсаторы С2.1, С2.2 или резисторы R2.1, R2.2. Логический блок системы управления при условии правильного монтажа наладки не требует. Желательно только убедиться с помощью осциллографа, что на выходах U1–U4 есть сигналы прямоугольной формы.

Интегратор проверяют двулучевым осциллографом. Для этого общий провод осциллографа соединяют с нулевым проводом электросети (N), провод первого канала подсоединяют к точке соединения резисторов R1.1 и R1.3, а провод второго канала – к точке соединения R1.2 и R1.4. На экране должны быть видны две синусоиды частотой 50 Гц и амплитудой около 150 В каждая, смещенные между собой по оси времени на угол /2. Далее проверяют наличие сигналов на выходах С1 и С2. Для этого общий провод осциллографа соединяют с точкой GND устройства. Сигналы должны иметь правильную прямоугольную форму, частоту также 50 Гц, амплитуду около 5 В и также должны быть смещены между собой на угол /2 по оси времени. Если фазосмещение сигналов отличается от /2, то его корректируют подбирая конденсатор С1.1.

Настройка ключевых элементов рекуператора заключается в установке тока базы транзисторов Т3.2, Т3.4, Т3.6, Т3.8 на уровне не менее 1.5 - 2 А. Это необходимо для насыщения этих транзисторов в открытом состоянии. Для настройки рекомендуется отключить рекуператор от системы управления (выходы U1-U4), и при настройке каждого каскада подавать напряжение +5 В на соответствующий вход рекуператора U1-U4 непосредственно с блока питания. Ток базы устанавливают поочередно для каждого каскада, подбирая сопротивление резисторов R3.19 - R3.22 соответственно. Для этого может потребоваться еще подбор R3.4, R3.8, R3.12, R3.16 для соответствующего каскада. После отключения напряжения на входе ток базы ключевого транзистора должен уменьшаться почти до нуля (несколько мкА).. Такая настройка обеспечивает наиболее благоприятный тепловой режим работы мощных ключевых транзисторов.

После настройки всех модулей восстанавливают все соединения в схеме и проверяют работы схемы в сборе. Первое включение рекомендуется выполнить с уменьшенными значениями емкости конденсаторов С3.1, С3.2 приблизительно до 1 мкФ. Конденсаторы лучше использовать неполярные. После включения устройства дайте ему поработать несколько минут, обращая особое внимание на температурный режим ключевых транзисторов. Если все в порядке – можете устанавливать электролитические конденсаторы. Увеличивать емкость конденсаторов до номинального значения рекомендуется в несколько этапов, каждый раз проверяя температурный режим.

Мощность отмотки непосредственно зависит от емкости конденсаторов С3.1 и С3.2. Для увеличения мощности нужны конденсаторы большей емкости. Предельное значение емкости определяется величиной импульсного тока заряда. О его величине можно судить, подключая осциллограф параллельно резисторам R3.17 и R3.18. Для транзисторов КТ848А он не должен превышать 20 А. Если требуется еще большая мощность отмотки, придется использовать более мощные транзисторы, а также диоды D3.1-D3.4.

Не рекомендуется использовать слишком большую мощность отмотки. Как правило, 1-2 кВт вполне достаточно. Если устройство работает совместно с другими потребителями, счетчик при этом вычитает из их мощности мощность устройства, но электропроводка будет загружена реактивной мощностью. Это нужно учитывать, чтобы не вывести из строя электропроводку.

www.cavr.ru

Генератор реактивной мощности 1 Квт - Способы экономии электроэнергии - Статьи

Устройство предназначено для отмотки показаний индукционных электросчетчиков без измене-ния их схем включения. Применительно к электронным и электронно-механическим счетчикам, в кон-струкцию которых заложена неспособность к обратному отсчету показаний, устройство позволяет пол-ностью остановить учет до уровня реактивной мощности генератора. При указанных на схеме элемен-тах устройство рассчитано на номинальное напряжение сети 220 В и мощность отмотки 1 кВт. Приме-нение других элементов позволяет соответственно увеличить мощность.

Устройство, собранное по предлагаемой схеме, просто вставляется в розетку и счетчик начинает считать в обратную сторону. Вся электропроводка остается нетронутой. Заземление не нужно.

Теоретические основы

Работа устройства основана на том, что датчики тока электросчетчиков, в том числе и электронных, содержат входной индукционный преобразователь, имеющий низкую чувствительность к токам высокой частоты. Этот факт позволяет внести значительную отрицательную погрешность в учет, если потребление осуществлять импульсами высокой частоты. Другая особенность – счетчик является реле направления мощности, т.е если с помощью какого-либо источника (например дизель-генератора) питать саму электрическую сеть, то счетчик вращается в обратную сторону.

Перечисленные факторы позволяют создать имитатор генератора. Основным элементом такого устройства является конденсатор соответствующей емкости. Конденсатор в течение четверти периода сетевого напряжения заражают от сети импульсами высокой частоты. При определенном значении частоты (зависит от характеристик входного преобразователя счетчика), счетчик учитывает только четверть от фактически потребленной энергии. Во вторую четверть периода конденсатор разряжают обратно в сеть напрямую, без высокочастотной коммутации. Счетчик учитывает всю энергию, питающую сеть. Фактически энергия заряда и разряда конденсатора одинакова, но полностью учитывается только вторая, создавая имитацию генератора, питающего сеть. Счетчик при этом считает в обратную сторону со скоростью, пропорциональной разности в единицу времени энергии разряда и учтенной энергии заряда. Электронный счетчик будет полностью остановлен и позволит безучетно потреблять энергию, не более значения энергии разряда. Если мощность потребителя окажется большей, то счетчик будет вычитать из нее мощность устройства.

Фактически устройство приводит к циркуляции реактивной мощности в двух направлениях через счетчик, в одном из которых осуществляется полный учет, а в другом – частичный.

Принципиальная схема устройства

Принципиальная схема приведена на рис.1. Основными элементами устройства являются инте-гратор, представляющий собой резистивный мост R1-R4 и конденсатор С1, формирователь импульсов (стабилитроны D1, D2 и резисторы R5, R6), логический узел (элементы DD1.1, DD2.1, DD2.2), тактовый генератор (DD2.3, DD2.4), усилитель (Т1, Т2), выходной каскад (С2, Т3, Br1) и блок питания на транс-форматоре Tr1.

Интегратор предназначен для выделения из сетевого напряжения сигналов, синхронизирующих работу логического узла. Это прямоугольные импульсы уровня ТТЛ на входах 1 и 2 элемента DD1.1.

Фронт сигнала на входе 1 DD1.1 совпадает с началом положительной полуволны сетевого на-пряжения, а спад – с началом отрицательной полуволны. Фронт сигнала на входе 2 DD1.1 совпадает с началом положительной полуволны интеграла сетевого напряжения, а спад - с началом отрицательной полуволны. Таким образом, эти сигналы представляют собой прямоугольные импульсы, синхронизиро-ванные сетью и смещенные по фазе относительно друг друга на угол p/2.

Сигнал, соответствующий напряжению сети, снимается с резистивного делителя R1, R3, ограни-чивается до уровня 5 В с помощью резистора R5 и стабилитрона D2, затем через гальваническую раз-вязку на оптроне ОС1 подается на логический узел. Аналогично формируется сигнал, соответствующий интегралу напряжения сети. Процесс интегрирования обеспечивается процессами заряда и разряда кон-денсатора С1.

Логический узел служит для формирования сигналов управления мощным ключевым транзисто-ром Т3 выходного каскада. Алгоритм управления синхронизирован выходными сигналами интегратора. На основе анализа этих сигналов, на выходе 4 элемента DD2.2 формируется сигнал управления выход-ным каскадом. В необходимые моменты времени логический узел модулирует выходной сигнал сигна-лом задающего генератора, обеспечивая высокочастотное энергопотребление.

Для обеспечения импульсного процесса заряда накопительного конденсатора С2 служит задаю-щий генератор на логических элементах DD2.3 и DD2.4. Он формирует импульсы частотой 2 кГц ам-плитудой 5 В. Частота сигнала на выходе генератора и скважность импульсов определяются параметра-ми времязадающих цепей С3-R20 и C4-R21. Эти параметры могут подбираться при настройке для обес-печения наибольшей погрешности учета электроэнергии, потребляемой устройством.

Сигнал управления выходным каскадом через гальваническую развязку на оптроне ОС3 поступа-ет на вход двухкаскадного усилителя на транзисторах Т1 и Т2. Основное назначение этого усилителя – полное открытие с вводом в режим насыщения транзистора Т3 выходного каскада и надежное запира-ние его в моменты времени, определяемые логическим узлом. Только ввод в насыщение и полное за-крытие позволят транзистору Т3 функционировать в тяжелых условиях работы выходного каскада. Если не обеспечить надежное полное открытие и закрытие Т3, причем за минимальное время, то он выходит из строя от перегрева в течение нескольких секунд.

Блок питания построен по классической схеме. Необходимость применения двух каналов пита-ния продиктована особенностью режима выходного каскада. Обеспечить надежное открывание Т3 уда-ется только при напряжении питания не менее 12В, а для питания микросхем необходимо стабилизиро-ванное напряжение 5В. При этом общим проводом можно лишь условно считать отрицательный полюс 5- вольтового выхода. Он не должен заземляться или иметь связь с проводами сети. Главным требова-нием к блоку питания является возможность обеспечить ток до 2 А на выходе 36 В. Это необходимо для ввода мощного ключевого транзистора выходного каскада в режим насыщения в открытом состоянии. В противном случае на нем будет рассеиваться большая мощность, и он выйдет из строя.

Детали и конструкция

Микросхемы могут применяться любые: 155, 133, 156 и других серий. Не рекомендуется приме-нение микросхем на основе МОП - структур, так как они более подвержены влиянию наводок от работы мощного ключевого каскада.

Ключевой транзистор Т3 обязательно устанавливается на радиаторе площадью не менее 200 см2. Для транзистора Т2 применяется радиатор площадью не менее 50 см2. Из соображений безопасности в качестве радиаторов не следует использовать металлический корпус устройства.

Накопительный конденсатор С2 может быть только неполярным. Применение электролитическо-го конденсатора не допускается. Конденсатор должен быть рассчитан на напряжение не менее 400В.

Резисторы: R1 – R4, R15 типа МЛТ-2; R18, R19 - проволочные мощностью не менее 10 Вт; ос-тальные резисторы типа МЛТ-0.25.

Трансформатор Tr1 – любой мощностью около 100 Вт с двумя раздельными вторичными обмот-ками. Напряжение обмотки 2 должно быть 24 - 26 В, напряжение обмотки 3 должно быть 4 - 5 В. Глав-ное требование – обмотка 2 должна быть рассчитана на ток 2 – 3 А. Обмотка 3 маломощная, ток потреб-ления от нее составит не более 50 мА.

Устройство в целом собирают в каком-либо корпусе. Очень удобно (особенно в целях конспира-ции) использовать для этого корпус от бытового стабилизатора напряжения, которые в недалеком про-шлом широко использовались для питания ламповых телевизоров.

При наладке схемы соблюдайте осторожность! Помните, что не вся низковольтная часть схемы имеет гальваническую развязки от электрической сети! Не рекомендуется в качестве ра-диатора для выходного транзистора использовать металлический корпус устройства. Применение плавких предохранителей – обязательно! Накопительный конденсатор работает в предельном режиме, поэтому перед включением устройства его нужно разместить в прочном металлическом корпусе. Применение электролитического (оксидного) конденсатора не допускается!

Низковольтный блок питания проверяют отдельно от других модулей. Он должен обеспечивать ток не менее 2 А на выходе 36 В, а также 5 В для питания системы управления.

Интегратор проверяют двулучевым осциллографом. Для этого общий провод осциллографа со-единяют с нулевым проводом электросети (N), провод первого канала подсоединяют к точке соединения резисторов R1 и R3, а провод второго канала – к точке соединения R2 и R4. На экране должны быть видны две синусоиды частотой 50 Гц и амплитудой около 150 В каждая, смещенные между собой по оси времени на угол p/2. Далее проверяют наличие сигналов на выходах ограничителей, подключая ос-циллограф параллельно стабилитронам D1 и D2. Для этого общий провод осциллографа соединяют с точкой N сети. Сигналы должны иметь правильную прямоугольную форму, частоту 50 Гц, амплитуду около 5 В и также должны быть смещены между собой на угол p/2 по оси времени. Допускается нарас-тание и спад импульсов в течение не более 1мс. Если фазосмещение сигналов отличается от p/2, то его корректируют подбирая конденсатор С1. Крутизну фронта и спада импульсов можно изменять, подби-рая сопротивления резисторов R5 и R6. Эти сопротивления должны быть не менее 8 кОм, в противном случае ограничители уровня сигнала будут оказывать влияние на качество процесса интегрирования, что в итоге будет приводить к перегрузке транзистора выходного каскада.

Затем налаживают генератор, отключив силовую часть схемы от электросети. Генератор должен формировать импульсы амплитудой 5 В и частотой около 2 кГц. Скважность импульсов приблизительно 1/1. При необходимости для этого подбирают конденсаторы С3, С4 или резисторы R20, R21.

Логический узел при условии правильного монтажа наладки не требует. Желательно только убе-диться с помощью осциллографа, что на входах 1 и 2 элемента DD1.1 есть периодические сигналы пря-моугольной формы, смещенные относительно друг друга по оси времени на угол p/2. На выходе 4 DD2.2 должны периодически через каждые 10 мс формироваться пачки импульсов частотой 2 кГц, дли-тельность каждой пачки 5 мс.

Настройка выходного каскада заключается в установке тока базы транзистора Т3 на уровне не менее 1.5 -2 А. Это необходимо для насыщения этого транзистора в открытом состоянии. Для настройки рекомендуется отключить выходной каскад с усилителем от логического узла (отсоединить резистор R22 от выхода элемента DD2.2), и управлять каскадом подавая напряжение +5 В на отсоединенный кон-такт резистора R22 непосредственно с блока питания. Вместо конденсатора С1 временно включают на-грузку в виде лампы накаливания мощностью 100 Вт. Ток базы Т3 устанавливают подбирая сопротив-ление резистора R18. Для этого может потребоваться еще подбор R13 и R15 усилителя. После зажига-ния оптрона ОС3, ток базы транзистора Т3 должен уменьшаться почти до нуля (несколько мкА). Такая настройка обеспечивает наиболее благоприятный тепловой режим работы мощного ключевого транзи-стора выходного каскада.

После настройки всех элементов восстанавливают все соединения в схеме и проверяют работу схемы в сборе. Первое включение рекомендуется выполнить с уменьшенным значением емкости кон-денсатора С2 приблизительно до 1 мкФ. После включения устройства дайте ему поработать несколько минут, обращая особое внимание на температурный режим ключевого транзистора. Если все в порядке – можете увеличивать емкость конденсатора С2. Увеличивать емкость до номинального значения реко-мендуется в несколько этапов, каждый раз проверяя температурный режим.

Мощность отмотки в первую очередь зависит от емкости конденсатора С2. Для увеличения мощ-ности нужен конденсатор большей емкости. Предельное значение емкости определяется величиной им-пульсного тока заряда. О его величине можно судить, подключая осциллограф параллельно резистору R19. Для транзисторов КТ848А он не должен превышать 20 А. Если требуется увеличить мощность от-мотки, придется использовать более мощные транзисторы, а также диоды Br1. Но лучше для этого ис-пользовать другую схему с выходным каскадом на четырех транзисторах.

Не рекомендуется использовать слишком большую мощность отмотки. Как правило, 1 кВт впол-не достаточно. Если устройство работает совместно с другими потребителями, счетчик при этом вычи-тает из их мощности мощность устройства, но электропроводка будет загружена реактивной мощно-стью. Это нужно учитывать, чтобы не вывести из строя электропроводку.

P.S. Не забывайте вовремя выключать устройство. Лучше всегда оставаться в небольшом долгу перед государством. Если вдруг Ваш счетчик покажет, что государство должно Вам, оно этого никогда не простит.

Рис.1. Генератор реактивной мощности 1 кВт. Схема электрическая принципиальная

promka.at.ua

Схему генератора обратной реактивной мощности – 5 квт

Схема генератора a2tc0091 схему генератора обратной реактивной мощности - 5 квт.

Еще раз об электронном способе отмотки электросчетчика мифы и реальность Схема как остановить электросчётчик бесплатно генератор реактивной мощности 1 квт.

Схема включения асинхронного генератора асинхронного двигателя в качестве генератора Аренда бензиновых генераторов и других источников электричества на жидком топливе в.

Компенсация реактивной мощности 115 5 1 8 5 схемы awn 44 47 1250 55587 5 квт ч av Регулятор яркости светильника до 2 квт нижеприведенный регулятор яркости светильника.

Методы схемы выключения остановки и отмотки назад индукционных и электронных счётчиков Электрическая схема это изображение электрической цепи с помощью условных обозначений.

Электрическая схема эсуд ваз-2114

Схема подключения магнитолы ваз 211440

Схема подключения электровентилятора на ваз

Схема металлоискатели на avr

Ваз-11183 схема электропроводки

Генератор hyundai xg схема

gooddies.sytes.net

Способ №38 Генератор реактивной мощности 1 Квт

  1. Барк 100У-068С
  2. Новости
  3. Генератор обратной мощности для электросчетчика схема
Добавлено: 2017-06-28 14:17

Еще видео на тему «Генератор обратной мощности для электросчетчика схема»

А давайте у Борисыча спросим, на гидрогенераторах есть что-нибудь подобное? Как они в двигательном режиме себя чувствуют, если судьба их туда загнала? И какая есть делилка на ГЭС?

Генератор реактивной мощности 1 Квт - Способы экономии

Приведена векторная диаграмма в двигательном режиме с учётом реактивной мощности.не напутано ли в схеме соединения? Векторы Uав и (-Iс) направлены встречно.

Генератор обратной мощности – для чего он необходим

Сергей, тема об обратной активной мощности.Обратная реактивная мощность другая песня, другая защита, другой принцип.

Генератор обратной мощности - в законе? - Конференция

Цифровые генераторы rigol до 6 ггц. До 665 форм сигналов. Универсальные, произв. Все новинки, генератор реактивной мощности 6 квт. Генератор реактивной мощности 6 квт. Устройство предназначено для отмотки показаний - продажа, аренда генераторов. Аренда и продажа дизельных генераторов. Хороший выбор и цены, еще раз об электронном способе. (о так называемом генераторе реактивной или обратной мощности, он же источник. Как отмотать счетчики - генератор обратной - мощность отмотки определяется элементами, используемыми при сборке. Генератор обратной мощности. Генератор обратной мощности. Описание способов экономии электроэнергии, принципиальные.

Коллеги, приглашаю всех желающих посетителей нашего форума принять участие в опросе Где работают релейщики. Спасибо

Вертикальные гидрогенераторы из-за особенностей своей конструкции работают в режиме синхронного компенсатора только совместно с турбиной. Воду из камеры гидротурбины отжимают сжатым воздухом. С этой целью на гидростанциях предусматривают специальную установку со сжатым воздухом. В течение всего периода работы гидрогенератора в режиме синхронного компенсатора в камере поддерживается избыточное давление.См. Внешняя ссылка

Советы бывалого релейщика Релейная защита и автоматика генераторов, двигателей Защита от обратной мощности и от включения на стоящий генератор

Компенсация реактивной мощности 665 5 6 8 5 схемы awn 99 97 6755 55587 5 квт ч av Регулятор яркости светильника до 7 квт нижеприведенный регулятор яркости светильника.

Для того, чтобы контролировать расход электроэнергии, необходимо знать точную цифру, потребляемую Вашими электроприборами. Число, показывающее на используемую мощность, указывается, обычно, в технических характеристиках электроустройства. Зная это число и возможные способы проверки этого показателя, можно контролировать расход электроэнергии. Или приобрести генератор обратной мощности электросчетчика и забыть о расчетах. Однако, следует заметить, что промышленностью выпускаются уже «умные» приборы для учета электричества, которые могут зафиксировать обман. Тогда серьезных проблем с Энергонадзором уже не избежать!

Фундамент под раздвижные ворота длиной 4 метра схема

  • Мостовой выпрямитель схема

  • Схема циркуляционный насос

  • Схема электронный замок

  • Схема электрическая кухни

  • Универсальное применение электроэнергии во всех сферах человеческой деятельности сопряжено с поисками бесплатного электричества. Из-за чего новой вехой в развитии электротехники стала попытка создать генератор свободной энергии, который позволили бы значительно удешевить или свести к нулю затраты на получение электроэнергии. Наиболее перспективным источником для реализации этой задачи является свободная энергия.

    Что представляет собой свободная энергия?

    Термин свободной энергии возник во времена широкомасштабного внедрения и эксплуатации двигателей внутреннего сгорания, когда проблема получения электрического тока напрямую зависела от затрачиваемых для этого угля, древесины или нефтепродуктов. Поэтому под свободной энергией понимается такая сила, для добычи которой нет необходимости сжигать топливо и, соответственно, расходовать какие-либо ресурсы.

    Первые попытки научного обоснования возможности получения бесплатной энергии были заложены Гельмгольцем, Гиббсом и Теслой. Первый из них разработал теорию создания системы, в которой вырабатываемая электроэнергия должна быть равной или больше затрачиваемой для начального пуска, то есть получения вечного двигателя. Гиббс высказал возможность получения энергии при протекании химической реакции настолько длительной, чтобы этого хватало для полноценного электроснабжения. Тесла наблюдал энергию во всех природных явлениях и высказал теорию о наличии эфира – субстанции, пронизывающей все вокруг нас.

    Сегодня вы можете наблюдать реализацию этих принципов для получения свободной энергетики в . Некоторые из них давно встали на службу человечеству и помогают получать альтернативную энергетику из ветра, солнца, рек, приливов и отливов. Это те же солнечные батареи, гидроэлектростанции, которые помогли обуздать силы природы, находящиеся в свободном доступе. Но наряду с уже обоснованными и воплощенными в жизнь генераторами свободной энергии существуют концепции бестопливных двигателей, которые пытаются обойти закон сохранения энергии.

    Проблема сохранения энергии

    Главный камень преткновения в получении бесплатного электричества – закон сохранения энергии. Из-за наличия электрического сопротивления в самом генераторе, соединительных проводах и в других элементах электрической сети, согласно законов физики, происходит потеря выходной мощности. Энергия расходуется и для ее пополнения требуется постоянная подпитка извне или система генерации должна создавать такой избыток электрической энергии, чтобы ее хватало и для питания нагрузки, и для поддержания работы генератора. С математической точки зрения генератор свободной энергии должен иметь КПД более 1, что не укладывается в рамки стандартных физических явлений.

    Схема и конструкция генератора Теслы

    Никола Тесла стал открывателем физических явлений и создал на их основе многие электрические приборы, к примеру, трансформаторы Тесла, которые используются человечеством, и по сей день. За всю историю своей деятельности он запатентовал тысячи изобретений, среди которых есть не один генератор свободной энергии.

    Рис. 1: Генератор свободной энергии Тесла

    Посмотрите на рисунок 1, здесь приведен принцип получения электроэнергии при помощи генератора свободной энергии, собранного из катушек Тесла. Это устройство предполагает получение энергии из эфира, для чего катушки, входящие в его состав настраиваются на резонансную частоту. Для получения энергии из окружающего пространства в данной системе необходимо соблюдать следующие геометрические соотношения:

    • диаметр намотки;
    • сечения провода для каждой из обмоток;
    • расстояние между катушками.

    Сегодня известны различные варианты применения катушек Тесла в конструкции других генераторов свободной энергии. Правда, каких-либо значимых результатов их применения добиться, еще не удалось. Хотя некоторые изобретатели утверждают обратное, и держат результат своих разработок в строжайшей тайне, демонстрируя лишь конечный эффект работы генератора. Помимо этой модели известны и другие изобретения Николы Теслы, которые являются генераторами свободной энергии.

    Генератор свободной энергии на магнитах

    Эффект взаимодействия магнитного поля и катушки широко применяется в . А в генераторе свободной энергии этот принцип применяется не для вращения намагниченного вала за счет подачи электрических импульсов на обмотки, а для подачи магнитного поля в электрическую катушку.

    Толчком к развитию данного направления стал эффект, полученный при подаче напряжения на электромагнит (катушку намотанную на магнитопровод). При этом находящийся поблизости постоянный магнит притягивается к концам магнитопровода и остается притянутым даже после отключения питания от катушки. Постоянный магнит создает в сердечнике постоянный поток магнитного поля, которое будет удерживать конструкцию до тех пор, пока ее не оторвут физическим воздействием. Этот эффект был применен в создании схемы генератора свободной энергии на постоянных магнитах.


    Рис. 2. Принцип действия генератора на магнитах

    Посмотрите на рисунок 2, для создания такого генератора свободной энергии и питания от него нагрузки необходимо сформировать систему электромагнитного взаимодействия, которая состоит из:

    • пусковой катушки (I);
    • запирающей катушки (IV);
    • питающей катушки (II);
    • поддерживающей катушки (III).

    Также в схему входит управляющий транзистор VT, конденсатор C, диоды VD, ограничительный резистор R и нагрузка Z­ H .

    Данный генератор свободной энергии включается посредством нажатия кнопки «Пуск», после чего управляющий импульс подается через VD6 и R6 на базу транзистора VT1. При поступлении управляющего импульса транзистор открывается и замыкает цепь протекания тока через пусковые катушки I. После чего электрический ток протечет по катушкам I и возбудит магнитопровод, который притянет постоянный магнит. По замкнутому контуру магнитосердечника и постоянного магнита будут протекать силовые линии магнитного поля.

    От протекающего магнитного потока в катушках II, III, IV наводится ЭДС. Электрический потенциал от IV катушки подается на базу транзистора VT1, создавая управленческий сигнал. ЭДС в катушке III предназначена для поддержания магнитного потока в магнитопроводах. ЭДС в катушке II обеспечивает электроснабжение нагрузки.

    Камнем преткновения в практической реализации такого генератора свободной энергии является создание переменного магнитного потока. Для этого в схеме рекомендуется установить два контура с постоянными магнитами, в которых силовые линии имеют встречное направление.

    Кроме вышеприведенного генератора свободной энергии на магнитах сегодня существует ряд схожих устройств конструкции Серла, Адамса и других разработчиков, в основе генерации которых лежит использование постоянного магнитного поля.

    Последователи Николы Теслы и их генераторы

    Посеянные Теслой семена невероятных изобретений породили в умах соискателей неутолимую жажду воплотить в реальность фантастические идеи создания вечного двигателя и отправить механические генераторы на пыльную полку истории. Наиболее известные изобретатели использовали принципы изложенные Николой Тесла в своих устройствах. Рассмотрим наиболее популярные из них.

    Лестер Хендершот

    Хендершот развивал теорию о возможности использования магнитного поля Земли для генерации электроэнергии. Первые модели Лестер представил еще в 1930-х годах, но они так и не были востребованы его современниками. Конструктивно генератор Хендершота состоит из двух катушек со встречной намоткой, двух трансформаторов, конденсаторов и подвижного соленоида.


    Рис. 3: общий вид генератора Хендершота

    Работа такого генератора свободной энергии возможна только при его строгой ориентации с севера на юг, поэтому для настройки работы обязательно используется компас. Намотка катушек выполняется на деревянных основаниях с разнонаправленной намоткой, чтобы снизить эффект взаимной индукции (при наведении в них ЭДС, в обратную сторону ЭДС наводится не будет). Помимо этого катушки должны настраиваться резонансным контуром.

    Джон Бедини

    Свой генератор свободной энергии Бедини представил в 1984 году, особенностью запатентованного устройства был энерджайзер – устройство с постоянным вращающимся моментом, которое не теряет оборотов. Такой эффект был достигнут за счет установки на диск нескольких постоянных магнитов, которые при взаимодействии с электромагнитной катушкой создают в ней импульсы и отталкиваются от ферромагнитного основания. Благодаря чему генератор свободной энергии получал эффект самозапитки.

    Более поздние генераторы Бедини стали известны за счет одного школьного эксперимента. Модель оказалась значительно проще и не представляла собой чего-то грандиозного, но она смогла выполнять функции генератора свободного электричества порядка 9 дней без помощи извне.


    Рис. 4: принципиальная схема генератора Бедини

    Посмотрите на рисунок 4, здесь приведена принципиальная схема генератора свободной энергии того самого школьного проекта. В ней используются следующие элементы:

    • вращающийся диск с несколькими постоянными магнитами (энерджайзер);
    • катушка с ферромагнитным основанием и двумя обмотками;
    • аккумулятор (в данном примере он был заменен на батарейку 9В);
    • блок управления из транзистора (Т), резистора (Р) и диода (Д);
    • токосъем организован с дополнительной катушки, питающей светодиод, но можно производить питание и от цепи аккумулятора.

    С началом вращения постоянные магниты создают магнитное возбуждение в сердечнике катушки, которое наводит ЭДС в обмотках выходных катушек. За счет направления витков в пусковой обмотке ток начинает протекать, как показано на рисунке ниже через пусковую обмотку, резистор и диод.


    Рис. 5: начало работы генератора Бедини

    Когда магнит находится непосредственно над соленоидом, сердечник насыщается и запасенной энергии становится достаточно для открытия транзистора Т. При открытии транзистора, ток начинает протекать и в рабочей обмотке, осуществляющей подзаряд аккумулятора.


    Рисунок 6: запуск обмотки подзаряда

    Энергии на этом этапе становится достаточно для намагничивания ферромагнитного сердечника от рабочей обмотки, и он получает одноименный полюс с находящимся над ним магнитом. Благодаря магнитному полюсу в сердечнике, магнит на вращающемся колесе отталкивается от этого полюса и ускоряет дальнейшее движение энерджайзера. С ускорением движения импульсы в обмотках возникают все чаще, и светодиод с мигающего режима переходит в режим постоянного свечения.

    Увы, такой генератор свободной энергии не является вечным двигателем, на практике он позволил системе работать в десятки раз дольше, чем она смогла бы функционировать на одной батарейке, но со временем все равно останавливается.

    Тариель Капанадзе

    Капанадзе разрабатывал модель своего генератора свободной энергии в 80 – 90-х годах прошлого века. Механическое устройство основывалось на работе усовершенствованной катушки Тесла, как утверждал сам автор, компактный генератор мог питать потребители мощностью в 5 кВт. В 2000-х генератор Капанадзе промышленных масштабов на 100 кВт попытались построить в Турции, по техническим характеристикам ему для пуска и работы требовалось всего 2 кВт.


    Рис. 7: принципиальная схема генератора Капанадзе

    На рисунке выше приведена принципиальная схема генератора свободной энергии, но основные параметры схемы остаются коммерческой тайной.

    Практические схемы генераторов свободной энергии

    Несмотря на большое количество существующих схем генераторов свободной энергии совсем немногие из них могут похвастаться реальными результатами, которые можно было бы проверить и повторить в домашних условиях.


    Рис. 8: рабочая схема генератора Тесла

    На рисунке 8 выше приведена схема генератора свободной энергии, которую вы можете повторить в домашних условиях. Этот принцип был изложен Николой Тесла, для его работы используется металлическая пластина, изолированная от земли и расположенная на какой-либо возвышенности. Пластина является приемником электромагнитных колебаний в атмосфере, сюда входит достаточно широкий спектр излучений (солнечных, радиомагнитных волн, статического электричества от движения воздушных масс и т.д.)

    Приемник подключается к одной из обкладок конденсатора, а вторая обкладка заземляется, что и создает требуемую разность потенциалов. Единственным камнем преткновения к его промышленной реализации является необходимость изолировать на возвышенности пластину большой площади для питания хотя бы частного дома.

    Современный взгляд и новые разработки

    Несмотря на повсеместную заинтересованность созданием генератора свободной энергии, вытеснить с рынка классический способ получения электроэнергии они еще не могут. Разработчикам прошлого, выдвигавшим смелые теории по поводу значительного удешевления электроэнергии, не хватало технического совершенства оборудования или параметры элементов не могли обеспечить надлежащего эффекта. А благодаря научно-техническому прогрессу человечество получает все новые и новые изобретения, которые делают уже осязаемым воплощение генератора свободной энергии. Следует отметить, что сегодня уже получены и активно эксплуатируются генераторы свободной энергии, работающие на силе солнце и ветра.

    Но, в то же время, в интернете вы можете встретить предложения о приобретении таких устройств, хотя в большинстве своем это пустышки, созданные с целью обмануть неосведомленного человека. А небольшой процент реально работающих генераторов свободной энергии, будь то на резонансных трансформаторах, катушках или постоянных магнитах, может справляться лишь с питанием маломощных потребителей, обеспечить электроэнергией, к примеру, частный дом или освещение во дворе они не могут. Генераторы свободной энергии – перспективное направление, но их практическая реализация все еще не воплощена в жизнь.

    Загрузка...