lampalupa.ru

Экологические источники энергии презентация ворде. Презентация "Альтернативные источники энергии" по географии – проект, доклад

Ветроэнергетика - отрасль энергетики, специализирующаяся на использовании энергии ветра - кинетической энергии воздушных масс в атмосфере. Ветроустановка http: //www. energypicturesonline. com/water mark. php? i=2241

Энергия ветра использует силу ветра для приведения в движение лопасти ветровых турбин. Вращения лопаток турбины преобразуется в электрический ток с помощью электрического генератора. В старой мельнице, энергия ветра была использована, чтобы включить механические машины, чтобы выполнять физическую работу, например, дробление зерна. Теперь, электрические токи, запряженных крупномасштабных ветровых электростанций используют в национальных электрических сетях, а также небольшие отдельные турбины, используют для обеспечения электроэнергией отдаленных местностей или индивидуального дома. http: //www. energypicturesonline. com/watermark. php? i=2272

Плюсы. Энергия ветра не производит никакого загрязнения окружающей среды, так как ветер является возобновляемым источником энергии. Ветровые электростанции могут быть построены от берега. Минусы. Энергия ветра является прерывистой. Если скорость ветра уменьшается движение турбины замедляется и энергии вырабатывается меньше. Большие ветровые электростанции могут иметь негативное влияние на декорации. http: //www. energypicturesonline. com/watermark. php? i=2142

Гелиоэнергетика. Гелиоэнергетика – энергия солнца, это практически бесконечный источник, пока наша звезда сияет. Тысячи джоуль тепла устремляются в нашем направлении. http: //pics. posternazakaz. ru/pnz/product/med/2 d 2 c 5 c 1 e 1 088 bb 3241178 b 7421 d 0754 b. jpg

Энергия солнца. Солнечная энергия используется обычно для отопления, приготовления пищи, производства электроэнергии, и даже в опреснении морской воды. Солнечные лучи захватываются солнечными установками и солнечный свет преобразуется в электричество, тепло. http: //20 c. com. ua/images/sun_batery. jpg

Плюсы. Солнечная энергия является возобновляемым ресурсом. До тех пор, пока солнце существует его энергия будет достигать Земли. Солнечная энергетика не загрязняет ни воды, ни воздуха, потому что нет никакой химической реакции, в результате сжигания топлива. Солнечная энергия может использоваться очень эффективно для практических применений, таких как отопление и освещение. Минусы Солнечная энергия не производит энергию, если Солнце не светит. Ночные и пасмурные дни серьезно ограничат количество произведенной энергии. Солнечные электростанции могут быть очень дорогими. http: //www. ecogroup. com. ua/sites/ecogroup. com. ua/files/u 1 /1307883633_solar-panels. jpg

Энергия воды. Генерация электроэнергии из движущейся воды является одним из самых чистых и доступных возобновляемых источников энергии. Это хороший жизнеспособный вариант, если вы живете по реке с достаточно устойчивым потоком. http: //myrt. ru/news/uploads/posts/200812/1230382583_gidroelektrostancia. jpg

Геотермальная энергетика - направление энергетики, основанное на производстве электрической и тепловой энергии за счёт тепловой энергии, содержащейся в недрах земли, на геотермальных станциях. Считается возобновляемым энергетическим.

Плюсы. Энергия Земли. Если все сделано правильно, геотермальная энергия не выделяет вредных побочных продуктов. Геотермальные электростанции, как правило, небольшие и имеют незначительное влияние на природный ландшафт. Минусы Если все сделано неправильно, геотермальная энергия может привести к загрязнителям. Неправильное бурение в земле способствует выделению опасных минералов и газов.

Биоэнергетика - отрасль электроэнергетики, основанная на использовании биотоплива из различных органических веществ, в основном органических отходов. http: //www. google. ru/imgres? q=%D 0%BA%D 0%B 0%D 1%82%D 0%B 8%D 0%BD%D 0 %BA%D 0%B 8+%D 1%8 D%D 0%B 5%D 1%80%D 0%B 3%D 0%B 8+%D 0%B 1%D 0 %B 8%D 0%BE%D 0%BC%D 0%B 0%D 1%81%D 1%8 B&hl=ru&newwindow=1&sa=X&biw =1567&bih=778&tbm=isch&prmd=imvns&tbnid=he. AWuowfco. Rsw. M: &imgrefurl=http: //inf o-site. my 1. ru/publ/11 -1 -0329&docid=b. B 0 G 7 Xw 634 v. IQM&imgurl=http: //www. buzzle. com/img/article. Images/3252081411235. jpg&w=350&h=223&ei=mpxs. T 9 is. Ka. Gg 4 g. TCy. JTAAg&zoom=1&iact=rc&dur=456&sig=1075 68240252406074391&page=2&tbnh=139&tbnw=197&start=30&ndsp=36&ved=1 t: 429, r: 33, s: 30&tx=108&ty=75

Биомасса Органические материалы из растений или животных могут быть использованы для создания энергии, которая может быть преобразована в электричество. Очевидно, что процесс горения все это плохо для окружающей среды, но и органические вещества горят гораздо чище, чем ископаемое топливо. http: //www. google. ru/imgres? q=%D 0%BA%D 0%B 0%D 1%82%D 0%B 8 %D 0%BD%D 0%BA%D 0%B 8+%D 1%8 D%D 0%B 5%D 1%80%D 0%B 3%D 0 %B 8%D 0%B 8+%D 0%B 1%D 0%B 8%D 0%BE%D 0%BC%D 0%B 0%D 1%81% D 1%8 B&start=66&hl=ru&newwindow=1&sa=X&biw=1567&bih=778&tbm=isc h&prmd=imvns&tbnid=QWPJk. Zu. BF 7 c. Fx. M: &imgrefurl=http: //aenergy. ru/1724 &docid=jgj. AC 40 VNl 70 SM&imgurl=http: //aenergy. ru/wpcontent/uploads/2009/08/article-18 -08 -092. JPG&w=586&h=279&ei=s. Jxs. T 7 m. XJr. DQ 4 QTeo 6 n. AAg&zoom=1

Водородная энергетика – активно развивающийся вид энергетики, выработка и потребление энергии основано на использовании водорода, который в свою очередь образуется при разложении воды. http: //www. google. ru/imgres? imgurl=http: //energokeeper. com/assets/images/0100/0015. jpg&imgrefurl=http: // energokeeper. com/vodorodnayaenergetika. html&h=225&w=300&sz=23&tbnid=k 3 Yg. Rb. Jb. F 24 XBM: &tbnh=93&tbnw=124&prev=/search%3 Fq%3 D% 25 D 0%25 BA%25 D 0%25 B 0%25 D 1%2582%25 D 0%25 B 8%25 D 0%25 BD%25 D 0%25 BA%25 D 0%25 B 8%2 B% 25 D 0%2592%25 D 0%25 BE%25 D 0%25 B 4%25 D 0%25 BE%25 D 1%2580%25 D 0%25 BE%25 D 0%25 B 4%25 D 0%25 BD%25 D 0%25 B 0%25 D 1%258 F%2 B%25 D 1%258 D%25 D 0%25 B 5%25 D 1%2580%25 D 0%25 B 3%25 D 0%25 B 5%25 D 1%2582%25 D 0%25 B 8%25 D 0%25 BA%25 D 0%25 B 0. %26 tbm%3 Disch%26 tbo%3 Du&zoom=1&q=%D 0%BA%D 0%B 0% D 1%80%D 1%82%D 0%B 8%D 0%BD%D 0%BA%D 0%B 8+%D 0%92%D 0%BE%D 0%B 4%D 0%BE%D 1%80%D 0%BE%D 0%B 4 %D 0%BD%D 0%B 0%D 1%8 F+%D 1%8 D%D 0%B 5%D 1%80%D 0%B 3%D 0%B 5%D 1%82%D 0%B 8%D 0%BA%D 0% B 0. &docid=Mmh 6 uf. KHBJO_x. M&hl=ru&sa=X&ei=U 7 hs. T 8 GRO 8 K 2 h. Qfqr. KCk. Bw&ved=0 CCs. Q 9 QEw. Ag&dur=141

Вывод. Альтернативные источники энергии, такие как солнечная энергия и ветер могут помочь снизить расходы на электроэнергию. Читайте о существующих альтернативных энергетических технологиях, а также о том, что будущие источники энергии помогут вам эффективно содержать дом. Альтернативные или возобновляемые источники энергии показывают значительные перспективы в снижении количества токсинов, которые являются побочными продуктами использования энергии. Они не только защищают от вредных побочных продуктов, но с использованием альтернативных источников энергии сохраняются многие природные ресурсы, которые мы в настоящее время используем в качестве источников энергии.

ТЕРМИНОЛОГИЯ ВОЗОБНОВЛЯЕМОЙ ЭНЕРГЕТИКИ Возобновляемые источники энергии (ВИЭ) – источники энергии, образующиеся на основе постоянно существующих или периодически возникающих процессов в природе, а также жизненном цикле растительного и животного мира и жизнедеятельности человеческого общества Выделяют три глобальных источника энергии: энергия Солнца; тепло Земли; энергия орбитального движения планет Примечание: солнечное излучение по мощности превосходит остальные более чем в 1000 раз.

К ВИЭ обычно относят: ВИЭ солнечного происхождения: Собственно энергия солнечной радиации Гидравлическая энергия рек Энергия ветра Энергия биомассы Энергия океана (разность температур воды, волны, разность соленостей морской и пресной воды) К несолнечным ВИЭ относятся: геотермальная энергия, энергия приливов Кроме того, к ВИЭ относят различные отходы и источники низкопотенциального тепла в сочетании с тепловыми насосами

Производство электроэнергии ЭНЕРГЕТИКА Моторное топливо Производство тепла ВОПРОС: Можно ли построить энергетику, удовлетворяющую современные нужды человечества, на возобновляемых источниках энергии? (без природного газа, нефти, угля) Солнечная энергия, Энергия ветра, Биомасса, Геотермальная энергия, Мини и микро-ГЭС, Природное и сбросное тепло с помощью тепловых насосов Геотермальная энергия, Энергия океана Водород, получаемый электролизом из воды с использованием различных ВИЭ и из биомассы (термохимическая переработка) Биотопливо из биомассы ОТВЕТ: Принципиально, ДА! Но есть много но…!

ФАКТОРЫ В ПОЛЬЗУ ВИЭ: ü Огромные ресурсы всех видов ВИЭ, во много раз превышающие обозримые потребности человечества ü Доступность в любой точке земного шара того или иного ВИЭ или их комбинации ü Экологическая чистота ü Доказанная, по крайней мере на демонстрационном уровне, жизненность технологий, а в ряде случаев высокая конкурентоспособность ü Возможность построения на основе ВИЭ как централизованных, так и децентрализованных (автономных) систем энергоснабжения ОСНОВНЫЕ ПРОБЛЕМЫ ШИРОКОЙ КОММЕРЦИАЛИЗАЦИИ ВИЭ (временные и связанные в основном с необходимостью конкурировать с традиционными энергетическими технологиями, базирующимися на пока еще относительно дешевых ископаемых топливах): ü Высокая стоимость производства энергоносителей (электричество, тепло, моторное топливо), несмотря на исходную «дармовую» энергию ü Неотработанность некоторых технологий в связи с недостаточным финансированием НИОКР

Вывод: использование ВИЭ в энергетическом балансе стран определяется конкуренцией достоинств и недостатков. Для развивающихся стран ВИЭ имеют социальную значимость

ПОЧЕМУ ЭНЕРГИЯ, ПРОИЗВОДИМАЯ УСТАНОВКАМИ НА ВИЭ, ОКАЗЫВАЕТСЯ В БОЛЬШИНСТВЕ СЛУЧАЕВ ДОРОГОЙ? Основная фундаментальная физическая причина – низкая плотность потоков энергии и их нерегулярность (суточная, сезонная, погодная и др.) ПЛОТНОСТИ ПОТОКОВ НЕКОТОРЫХ ВИЭ Солнечное излучение: ясный полдень – 1000 Вт/м 2 в среднем за год – 150– 250 Вт/м 2 Ветровой поток: при v=10 м/с – 500 Вт/м 2 при v= 5 м/с – 60 Вт/м 2 Водный поток: N ~ v 3 при v= 1 м/с – 500 Вт/м 2 В традиционных энергоустановках плотность энергетических потоков достигает сотен к. Вт или даже нескольких МВт/м 2 Результат: потребность в больших поверхностях для сбора энергии и необходимость использования больших аккумуляторов энергии, что обусловливает рост стоимости

Экологическое воздействие объектов солнечной энергетики солнечные электростанции (СЭС) Преимущества Недостатки Получение на выходе тепловых коллекторов электрической энергии, удобной для транспортировки Солнечные концентраторы вызывают большие по площади затенения земель, что приводит к сильным изменениям почвенных условий, растительности и т. д. Возможность получения высоких температур не только для нужд энергоснабжения, но и для получения особо чистых сплавов Возникает нагрев воздуха при прохождении через него солнечного излучения, сконцентрированного зеркальными отражателями; это приводит к изменению теплового баланса, влажности, направления ветра, в некоторых случаях возможны перегрев и возгорание систем использующих концентраторы Использование солнечного излучения как экологически чистого и неисчерпаемого источника. Применение низкокипящих жидкостей при неизбежной их утечке может привести к значительному загрязнению поверхностных и грунтовых вод. Особую опасность представляют жидкости, содержащие хроматы и нитраты, являющиеся высокотоксичными. Отсутствуют газовые выбросы при работе СЭС, экономия традиционных видов топлива Низкий коэффициент преобразования солнечной энергии в электрическую поднимает серьезные проблемы, связанные с охлаждением конденсата; при этом тепловой сброс в биосферу более чем вдвое превышает сброс от традиционных станций, работающих на горючих ископаемых.

Фотоэлектрические установки представляют собой параллельно или последовательно соединённые полупроводниковые элементы (фотоэлементы), в которых под влиянием солнечного излучения возникает фотоэлектрический эффект. 3) Фотоэлектрическое преобразование солнечной энергии

Экологическое воздействие объектов солнечной энергетики – (фотоэлектрические преобразователи (ФЭП)) Преимущества Недостатки простота в изготовлении и обслуживании; относительно высокая стоимость модульных установок; долговечность; экологическая чистота в процессе эксплуатации. низкий модулей. КПД промышленных возможность применения в городских выбросы при производстве условиях (не требует больших кремниевой пыли, кадмиевых и площадей и бесшумны); арсенидных соединений, опасных для здоровья людей;

Экологическое воздействие ВЭС 1. 2. 3. 4. Крупномасштабное строительство ВЭС в Европе на рубеже третьего тысячелетия привлекло внимание многих экологических служб и общественности с целью выявления тех отрицательных факторов, которые связаны с работой крупных ВЭУ. Основные формы воздействия ветроэнергетики на окружающую среду сводятся к следующему: воздействие на животный и растительный мир; помехи теле- , радиосвязи; изменение природного ландшафта; отчуждения земель. В настоящее время экологические исследования ВЭС продолжаются в части более глубокого изучения влияния на окружающую среду, особенно в связи с планами освоения прибрежных акваторий. Однако можно считать доказанным, что экологические проблемы ветроэнергетики в своем комплексе не могут служить препятствием для развития этой отрасли, которая уже в настоящее время вносит значительный вклад по отдельным странам в замещение ископаемых видов топлив. А с учетом того, что общий годовой потенциал ветровой энергии Земли оценивается в огромную цифру – 17, 1 тыс. ТВт. ч и значительно превышает энергетические потребности человечества, можно говорить о неограниченных возможностях использования энергии ветра в обозримом будущем.

Экологические аспекты ветроэнергетики Жизненный цикл ветроэлектростанции 1) Производство энергетического оборудования 2) Строительство электростанции 3) Эксплуатация 4) Утилизация Ссылка: Ермоленко Б. В. , Ермоленко Г. В, Рыженков М. А. Экологические аспекты ветроэнергетики// Теплоэнергетика, № 11, 2011 Негативный внешний эффект (евроцент/к. Втч) Источник энергии ВЭС Эффект 0, 15 Природный газ 1, 1 Угольная ЭС 2, 55

III. ИСПОЛЬЗОВАНИЕ ТЕПЛА ЗЕМЛИ (ГЕОТЕРМАЛЬНОЙ ЭНЕРГИИ) Рис. 1. Тепловые потоки Земли (а) и расположение мировых высокопотенциальных геотермальных ресурсов (б).

В России впервые в 1967 году было запатентовано изобретение и реализована на опытно-промышленной Паратунской Гео. ЭС (Камчатка) с бинарным циклом технология получения электрической энергии на основе использования геотермальной горячей воды. К настоящему времени более 500 подобных геотермальных энергетических установок с бинарным циклом работают во всем мире. Двухконтурные Гео. ЭС с бинарным циклом позволяют реализовать технологию получения электроэнергии из горячей геотермальной воды. Геотермальный теплоноситель в таких Гео. ЭС используется для подогрева и испарения в теплообменнике рабочего низкокипящего тела (например, изопентан) второго контура (см. рис. 2, б), которое в парообразном состоянии совершает работу в бинарной турбине. Затем происходит его конденсация в конденсаторе и весь рабочий цикл повторяется вновь. Для обеспечения конденсации пара в конденсаторе применяются различные системы охлаждения, в том числе воздушные градирни (см. рис. 2, а, б). Рис. 2 Принципиальные схемы технологий выработки электроэнергии на традиционных Гео. ЭС (а) и на Гео. ЭС с бинарным циклом (б).

Micro- and Mini. Hydro Power Installations N = from 10 к. W to several MW КОМПОНЕНТЫ ГИДРОУЗЛА Дамба Верхний бьеф Водослив Трубопровод ЛЭП Генерато р Турбина Отсасывающая труба Нижний бьеф

Классификация МГЭС По мощности: в России – от 0, 1 до 30 МВт в Европе (ESHA) – до 10 МВт ООН: - микро. ГЭС - до 0, 1 МВТ - мини-ГЭС - от 0, 1 до 1 МВТ - малые ГЭС - от 1 до 10 МВт По типу водотока: малых реках; ручьях; озерных водосбросах; оросительных водоводах; питьевых водоводах; По способу создания напора: технологических водотоках и плотинные; продуктопроводах деривационные; предприятий; смешанные (плотинно водосбросах ТЭЦ и АЭС; дервационные); малые ГЭС при готовом напорном промышленных и канализационных стоках. фронте (на перепадах каналов, в системах водоснабжения и др.).

Характеристики МГЭС Экологические аспекты: Минимальное затопление земель или их отсутствие (русловые МГЭС) Подтопление и переработка берегов присутствует в меньших масштабах Улучшение гидрологических условий реки Минимальное климатическое воздействие Минимальное ландшафтное преобразование Не препятствуют процессам водообмена, способствуют аэрации воды Не могут спровоцировать землетрясения Повышают кормность водоемов, благоприятно влияют на ихтиофауну Дают минимальный вклад в эмиссию газов по сравнению со всеми способами производства энергии (по полному циклу производства)

За последние годы в ЗАО «МНТО ИНСЭТ» разработаны «Концепции развития и схемы размещения объектов малой гидроэнергетики» для Республик Тыва (18 малых ГЭС) Алтай (35 малых ГЭС) Бурятия (12 малых ГЭС) Северная Осетия – Алания (17 малых ГЭС) общей мощностью более 370 МВт

По источникам биомасса делится: –древесные отходы (отходы лесохозяйственных и строительных компаний); –лесосечные отходы –лесные массивы с коротким циклом –травяные лигноцеллюлозные культуры (мискантус) –сахарные культуры (сахарная свекла, сахарный тростник, сорго) –крахмальные культуры (кукуруза, пшеница, зерно, ячмень) –масляные культуры (рапс, подсолнечники) –сельскохозяйственные субпродукты и отходы (солома, навоз, компост и т. д.) –органические фракции коммунально-бытовых твердых отходов и осадки сточных вод –промышленные отходы (например, от пищевой и бумажноцеллюлозной промышленности) V. Направления биоэнергетики

К основным жидким биотопливам, получаемым по современным технологиям, следует отнести: - биодизельное топливо (биодизель) (способ получения: переэтерификация триацилглицеридов (ТАГ) растительных масел и животных жиров; в качестве сопутствующего продукта получается глицерин); - возобновляемый дизель (способы получения: 1) гидропроцессинг ТАГ; 2) газификация биомассы или продуктов ее пиролиза с последующей каталитической конверсией синтез-газа, в том числе по технологиям Фишера-Тропша (английская аббревиатура процесса - BTL (biomass to liquid)); - биоэтанол первого поколения из пищевого сырья (способ получения: спиртовое брожение углеводсодержащего сырья дрожжами); - биобутанол первого поколения из пищевого сырья (способ получения: ацетоно-бутиловое сбраживание растворенных сахаров анаэробными клостридиями. В этом процессе образуется бутанол, ацетон и этанол в соотношении 60: 30: 10, соответственно; побочным продуктом является водород); - биоэтанол второго поколения из целлюлозного сырья (способы получения: 1) слабокислотный или энзиматический гидролиз лигноцеллюлозной биомассы, делигнификация, брожение и осушка полученного этанола; 2) газификация биомассы с последующей переработкой синтез-газа в этанол; 3) каталитический синтез этанола); - биобутанол второго поколения из целлюлозного сырья (способы получения: производство основано на ацетоно-бутиловом сбраживании анаэробными клостридиями растворенных сахаров, полученных из целлюлозы; - жидкое пиролизное биотопливо (бионефть) (способ получения: быстрый пиролиз). Бионефть широко используется как альтернативное топливо малой и коммунальной энергетики, а также в качестве химического сырья и сырья для дорожного строительства *Гидропроцессинг включает гидрокрекинг, гидрогенизацию и гидроочистку.

Топливо третьего поколения из продуктов биосинтеза микроводорослей Способ получения: 1) биосинтез этанола и водорода водорослями; 2) биосинтез а) углеводов (с последующим спиртовым или ацетоно-бутиловым сбраживанием до биоэтанола и биобутанола), б) углеводородов (с последующим гидрокрекингом до керосина, бензина, дизеля, мазута и др.), в) ТАГов (с получением переэтерификацией биодизеля и гидропроцессингом - авиационного топлива) и др. При этом сама биомасса микроводорослей или отходы ее переработки могут служить сырьем для производства биотоплива (метана, бионефти, жидких биотоплив) технологиями второй генерации (рис. 1).

Истощаемые, возобновляемые и невозобновляемые энергетические ресурсы. Ресурс (ressource «вспомогательное средство») - то, что можно использовать, тратить, запас или источник чего-либо, средство, возможность для осуществления чего-либо Природные ресурсы - совокупность объектов и систем живой и неживой природы, компоненты природной среды, окружающие человека и которые используются в процессе общественного производства для удовлетворения материальных и культурных потребностей человека и общества. Топливно-энергетические ресурсы подразделяются на истощаемые, возобновляемые и вторичные. Истощаемыми топливно-энергетическими ресурсами являются запасы природных ископаемых, использующиеся в качестве сырья для производства энергии (уголь, нефть, расщепляющиеся материалы и др.)

Истощаемые, возобновляемые и невозобновляемые энергетические ресурсы. Восполняемыми, или возобновляемыми источниками энергии называются источники, потоки энергии которых постоянно существуют или периодически возникают в окружающей среде и не являются следствием целенаправленной деятельности человека. К восполняемым энергоресурсам относят энергию: - Солнца; - мирового океана в виде энергии приливов и отливов, энергии волн; - рек; - ветра; - морских течений; - вырабатываемую из биомассы, морских водорослей; - водостоков; - твердых бытовых отходов; - геотермальных источников.

Энергетические ресурсы мира Уран – 761. 400 т Ядерный синтез с использованием дейтерия ресурс неограничен

Виды топлива (твердое, жидкое, газообразное, ядерное), их состав, теплота сгорания. Топливом называют вещество, выделяющее при определенных условиях тепловую энергию, которую используют в различных отраслях народного хозяйства для получения водяного пара или горячей воды для систем отопления, вентиляции, горячего водоснабжения и производства электроэнергии. Топливо по агрегатному состоянию делят на твердое, жидкое, газообразное, по способу получения – на естественное: уголь, торф, сланцы, природный газ и искусственное (синтетическое и композиционные): топливные брикеты, дизельное и соляровое топливо, мазут топочный и бытовой, топливные эмульсии и суспензии.

Виды топлива (твердое, жидкое, газообразное, ядерное), их состав, теплота сгорания. В состав твердого и жидкого топлива входят горючие элементы: 1) углерод С, водород Н, сера S, 2) негорючие элементы (внутренний и внешний балласт) кислород О, азот N, влага W и зола А. Топливо, которое используется для сжигания, называется рабочим. Ядерное топливо – вещество, в котором протекают ядерные реакции с выделением полезной энергии. Различают делящиеся вещества и термоядерное горючее Количество теплоты, выделяемое при полном сгорании единицы топлива, называется его теплотворностью, или теплотой сгорания и измеряется в к. Дж/кг или к. Дж/м 3.

Характеристики топлива: высшая и низшая теплота сгорания. Высшей теплотой сгорания топлива Qв называют количество теплоты в к. Дж, выделяемое 1 кг (или 1 м 3) рабочего топлива при условии, что все водяные пары, образующиеся от окисления водорода и испарения влаги топлива, конденсируются. В реальных условиях все водяные пары уходят в атмосферу, не сконденсировавшись, и поэтому для расчетов используют низшую теплоту сгорания топлива. Низшей теплотой сгорания топлива Qн называют количество теплоты в к. Дж, выделенное 1 кг (или 1 м 3) рабочего топлива, без учета конденсации водяных паров. Теплота Qн меньше Qв на теплоту парообразования водяных паров (2460 к. Дж/кг).

Характеристики топлива: зольность, продукты сгорания. Понятие условного топлива. Зольность - отношение массы негорючего остатка (золы), полученной после выжигания горючей части топлива, к массе исходного топлива, выражается в процентах, для углей (в т. ч. антрацитов) она составляет от 1 до 45 -50%, сланцев - 45 -80%, топливного торфа - 2 -30%, мазута - 0, 2 -1%, древесного топлива - ок. 1%. При горении выделяются продукты сгорания содержащие СО 2, Н 2 О, СН 4 и, кроме того, иногда и высших углеводородов, а при использовании воздуха - еще и N 2. также образуются H 2 S и NO 2

Характеристики топлива: зольность, продукты сгорания. Понятие условного топлива. Учет запасов разных видов топлива ведут в пересчете на условное топливо, теплота сгорания которого принимается равным 29 308 к. Дж/кг (7000 ккал/кг). Соотношение Э = Qн / 7000 называется калорийным коэффициентом, и его принимают для: - нефти - 1, 43; - природного газа- 1, 15; - торфа- 0, 34 -0, 41; - торфобрикетов 0, 45 -0, 6; - дизтоплива - 1, 45; - мазута- 1, 37.

Классификация природных ресурсов: По происхождению: - минеральные (полезные ископаемые); - климатические; - водные; - земельные (почвенные); - биологические; -ресурсы Мирового океана. -По исчерпаемости: -исчерпаемые: невозобновимые (минеральные, руды металлов, соли, сера); возобновимые (земля, вода, воздух, почвенные, гидроэнергетические); - неисчерпаемые (энергия солнца, геотермальная, ветра, морских приливов, отливов и течений). По применению: - природные ресурсы для промышленности: топливно-энергетические; металлургические; химическое и прочее сырье; - для сельского хозяйства: земельные; почвенные; агроклиматические; - для отдыха и туризма: рекреационные ресурсы.

Структура мирового потребления энергоресурсов Источники энергии 1971 год 1991 год 2000 год 2005 год 2010 год Нефть 47, 9 39, 2 38, 6 38, 3 37, 2 Уголь 30, 9 29 28, 7 28, 8 29, 1 Природный газ АЭС 18, 4 22 22, 1 22, 4 23, 5 0, 6 7 6, 9 6, 7 6, 1 2, 2 2, 8 3, 7 3, 8 4, 1 ГЭС и др.

Распределение запасов угольных ресурсов Мир, регионы Весь мир СНГ Зарубежная Европа Зарубежная Азия Африка Северная Америка Латинская Америка Австралия и Океания Ресурсы, млрд. тонн 1400 280 255 160 75 520 20 90

Десять первых стран по разведанным запасам угля Страна США Китай Россия ФРГ Великобритания Австралия ЮАР Украина Польша Индия Ресурсы, млрд. тонн 445 270 200 90 90 85 70 47 25 25

Десять первых стран по разведанным запасам нефти Страна Саудовская Аравия Ирак ОАЭ Кувейт Иран Венесуэла Мексика Россия Китай США Ресурсы, млрд. тонн 43, 1 16, 7 16, 2 15, 7 14, 9 10, 7 8, 5 6, 7 4, 0 3, 8

Десять первых стран по разведанным запасам газа Страна Россия Иран Катар ОАЭ Саудовская Аравия США Нигерия Алжир Венесуэла Ирак Ресурсы, трлн. м³ 48, 0 20, 1 7, 0 5, 3 5, 1 4, 5 4, 0 3, 6 3, 1

Мировая добыча рудного сырья Вид сырья Железные руды Марганцевые руды Хромовые руды Бокситы Медные руды Цинковые руды Свинцовые руды Оловянные руды Никелевые руды Добыча Главные страны добычи 970 Китай, Бразилия, Австралия, Россия, Украина, США, Канада, ЮАР. 22 Украина, Китай, ЮАР, Австралия, Бразилия, Индия. 10 Казахстан, ЮАР, Индия. 115 Австралия, Гвинея, Ямайка, Бразилия, Индия. 10 Чили, США, Канада, Замбия, ДР Конго, Перу. 7 Канада, Австралия, Китай, Перу, США, Мексика. 3 Австралия, США, Китай, Канада, Перу, Мексика. 0, 2 Китай, Бразилия, Индонезия, Малайзия, Таиланд, Боливия. 0, 9 Россия, Канада, Новая Каледония.

Мировая добыча нерудного сырья Вид сырья Добыча Фосфориты, апатиты Калийные соли Сера Алмазы (тыс. кар.) 130 60 55 110 Главные страны добычи США, Китай, Марокко, Иордания, Тунис, Россия. Канада, ФРГ, США, Франция, Израиль, Россия. США, Канада, Польша, Китай. Австралия, Ботсвана, ДР Конго, Россия.

Ресурсообеспеченность – это соотношение между величиной природных ресурсов и размерами их использования. Она выражается количеством лет, на которое должно хватить данного ресурса, либо его запасами из расчета на душу населения. Ресурсообеспеченность = запасы / добыча (число лет) Ежегодный рост добычи полезных ископаемых составляет 2% в год


Десять первых стран мира по размерам пашни Страна США Индия Россия Китай Австралия Канада Бразилия Казахстан Украина Нигерия Площадь пашни, млн. га 185, 7 166, 1 130, 3 92, 5 47, 0 45, 4 43, 2 34, 8 33, 3 30, 2

Распределение лесной площади Мир, регионы Весь мир СНГ Зарубежная Европа Зарубежная Азия Африка Северная Америка Латинская Америка Австралия и Океания Ресурсы, млн. га 4170 800 200 530 740 850 200

Десять первых стран мира по размерам лесной площади Страна Россия Канада Бразилия США ДР Конго Австралия Китай Индонезия Перу Боливия Лесная площадь, млн. га 765, 9 494, 0 488, 0 296, 0 173, 8 145, 0 130, 5 111, 3 84, 8 58, 0

Распределение ресурсов пресной воды Мир, регионы Весь мир Европа Азия Африка Северная Америка Южная Америка Австралия и Океания Ресурсы, тыс. км³ На душу населения, тыс. м³ 41, 0 6, 2 13, 2 4, 0 6, 4 9, 6 1, 6 7, 2 8, 6 3, 8 5, 5 15, 4 29, 8 56, 5

Десять первых стран мира по запасам пресной воды Страна Ресурсы, км³ Бразилия Россия Канада Китай Индонезия США Бангладеш Индия Венесуэла Мьянма 6950 4500 2900 2800 2530 2480 2360 2085 1320 1080 На душу населения, тыс. м³ 43, 0 30, 5 98, 5 2, 3 12, 2 9, 4 19, 6 2, 2 60, 3 23, 3

Десять крупнейших водохранилищ мира Название Виктория Братское Кариба Насер (Асуан) Вольта (Акосомбо) Даниел-Джонсон Гури Вади-Тартар Красноярское Гордон М. Шрам Страна Полный объем, км³ Площадь поверхности, км² Уганда, Кения, Танзания Россия Замбия, Зимбабве Египет, Судан Гана Канада Венесуэла Ирак Россия Канада 204, 8 76000 169, 3 160, 3 157, 0 148, 0 141, 8 135, 0 85, 5 73, 3 70, 1 5470 4450 5120 8480 1950 1500 3400 2000 1680

электростанциях, продукцию которой нельзя хранить.

Тип электростанций

Строительство и эксплуатация

Работа в энергосистеме

Воздействие на окружающую среду

Тепловые (ТЭС)

Строятся быстро и дешево, но потребляют большое количество топлива, следовательно, затраты на добычу и перевозку топлива.

Работают в постоянном режиме, но требуют длительной остановки при ремонтах.

Угольные ТЭС выбрасывают много твердых отходов и вредных газов в атмосферу.

Гидравлические (ГЭС)

Строятся дольше, стоят дороже всех типов электростанций. Используют энергию падающей воды, обслуживающий персонал невелик, себестоимость электроэнергии минимальна.

Могут покрывать сильные нагрузки, легко включаясь в нужное время.

Происходит затопление речных долин – особо ценных земель; зарегулирование стока рек.

Атомные (АЭС)

Строятся долго и стоят дорого, но электроэнергия дешевле, чем на ТЭС.

Использует уран, не зависит от топливных ресурсов, требует точности оборудования. Квалифицированных работников.

При работе без происшествий – воздействие на среду незначительно; требуется захоронение радиоактивных отходов.

Содержание презентации: I.Введение II.Атомная энергетика III.Нефть и уголь IV.Проблемы развития V.Переход к альтернативным источникам VI.Альтернативные источники энергии: i.Энергия солнца ii.Ветер iii.Водород iv.Управляемый термоядерный синтез v.Гидроэнергия vi.Энергия приливов и отливов vii.Энергия волн viii.Геотермальная энергия ix.Гидротермальная энергия VII.Заключение






Нефть и уголь Нефть Доказанные запасы нефти в мире оцениваются в 140 млрд. тонн, а ежегодная добыча около 3,5 млрд. тонн. Однако вряд ли стоит предрекать наступление через 40 лет глобального кризиса в связи с исчерпанием нефти в недрах Земли, ведь экономическая статистика оперирует цифрами доказанных запасов. А это далеко не все запасы планеты. Уголь Единой системы учёта запасов угля и его классификации не существует. На начало 90-х годов, по оценке МИРЭК, около 1040 млрд. тонн. Подавляющая часть разведанных запасов бурого угля и его добычи сосредоточена в промышленно развитых странах.


Проблемы развития Масштаб добычи и расходования энергоресурсов, металлов, воды и воздуха для производства необходимого человечеству количества энергии огромен, а запасы ресурсов стремительно сокращаются. Особенно остро стоит проблема быстрого исчерпания запасов органических природных энергоресурсов. Другая важная проблема современного индустриального общества - обеспечение сохранности природы, чистоты воды и воздуха.


Переход к альтернативным источникам Основные причины, указывающие на важность скорейшего перехода к АИЭ: Глобально-экологический: пагубное влияние на окружающую среду традиционных энергодобывающих технологий Политический: страна, которая освоит альтернативную энергетику, способна претендовать на мировое первенство и фактически диктовать цены на топливные ресурсы; Экономический: переход на альтернативные технологии в энергетике позволит сохранить топливные ресурсы страны для переработки в химической и других отраслях промышленности Социальный: численность и плотность населения постоянно растут. При этом трудно найти районы строительства АЭС, ГРЭС, где производство энергии было бы рентабельно и безопасно для окружающей среды. Эволюционно-исторический: традиционная энергетика представляется тупиковой; для эволюционного развития общества необходимо немедленно начать постепенный переход на альтернативные источники энергии.


Энергия солнца Ведутся работы по созданию солнечных электростанций, по использованию солнечной энергии для отопления домов и т.д. существующие солнечные батареи имеют сравнительно низкий коэффициент полезного действия и очень дороги в производстве. лучи


Ветер Недостатки Энергия ветра сильно рассеяна в пространстве, поэтому необходимы ветроэнергоустановки, Ветер очень непредсказуем - часто меняет направление, вдруг затихает даже в самых ветреных районах земного шара. Ветроэнергостанции не безвредны: они мешают полетам птиц и насекомых, шумят, отражают радиоволны вращающимися лопастями. Достоинства ее главного преимущества - экологической чистоты, разработаны ветроэнергоустановки, способные эффективно работать при самом слабом ветре




Управляемый термоядерный синтез Ядерные реакции синтеза широко распространены в природе, будучи источником энергии звезд. Ядерный синтез уже освоен человеком в земных условиях, но пока не для производства мирной энергии, а для производства оружия он используется в водородных бомбах.




Энергия приливов и отливов Подсчитано, что потенциально приливы и отливы могут дать человечеству примерно 70 млн. миллиардов киловатт-часов в год. Первая приливная электростанция мощностью 240 МВт была пущена в 1966 г. во Франции в устье реки Ранс, впадающей в пролив Ла- Манш, где средняя амплитуда приливов составляет 8.4 м.




Подземное тепло планеты – довольно хорошо известный и уже применяемый источник чистой энергии. В России первая геоТЭС мощностью 5 МВт была построена в 1966 г. на юге Камчатки, в долине реки Паужетки. В 1980 г. ее мощность составляла уже 11 МВт. Геотермальная энергия


Гидротермальная энергия Кроме геотермальной энергии активно используется тепло воды. Вода – это всегда хотя бы несколько градусов тепла, а летом она нагревается до 25 С. Для использования этого тепла необходима установка, действующая по принципу холодильник наоборот. Известно, что холодильник выкачивает из своей замкнутой камеры тепло и выбрасывает его в окружающую среду.




Заключение На сегодня существует несколько основных концепций решения проблемы. –Расширение сети станций на урановом топливе. –Переход к использованию в качестве ядерного топлива тория- 232, который в природе более распространен, нежели уран. –Переход к атомным реакторам на быстрых нейтронах, которые могли бы обеспечить производство ядерного топлива более чем на 3000 лет. –Освоение термоядерных реакций, во время которых происходит выделение энергии в процессе превращения водорода в гелий.

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

Альтернативные источники энергии Подготовила: преподаватель биологии ДТПА Поплавская Е.Ф.

2 слайд

Описание слайда:

Альтернативные источники энергии "Мир, вокруг которого можно облететь за 90 минут, уже никогда не будет для людей тем, чем он был для их предков".

3 слайд

Описание слайда:

4 слайд

Описание слайда:

5 слайд

Описание слайда:

Проблемные вопросы Каковы преимущества и недостатки альтернативных источников энергии? Какие существуют виды электростанций? Какой из ниже перечисленных альтернативных источников энергии будет доминировать?

6 слайд

Описание слайда:

7 слайд

Описание слайда:

В связи с проблемой экологической катастрофы важное место отводится поиску альтернативных источников энергии. Существует великое множество самых разных способов получения энергии без выделения в атмосферу парниковых газов. Наиболее известными из них можно назвать: Энергия солнца Энергия ветра Геотермальная энергия Энергия рек Энергия Мирового океана Энергия приливов Энергия водорода

8 слайд

Описание слайда:

Преимущество: Колоссальное количество энергии Недостаток: Слабая плотность солнечной энергии

9 слайд

Описание слайда:

10 слайд

Описание слайда:

Солнечная электростанция Главным недостатком солнечных электростанций являются их высокая стоимость и большая занимаемая площадь. Так, для размещения солнечной электростанции мощностью 100 МВт требуется площадь в 200 га, а для АЭС мощностью 1000 МВт - всего 50 га.

11 слайд

Описание слайда:

Солнечная энергетика в Украине Знаковые темпы развития украинской солнечной энергетики в 2011 году доказали всему миру, что Украина обладает внушительным потенциалом в данной области. По итогам прошлого года на территории страны было введено в эксплуатацию оборудование общей мощностью 185,5 МВт, в то время как в 2010 году установленная мощность фотоэлектрических модулей составляла всего 2,5 МВт. Главный образом такой мощный скачок стал последствием утверждения высокой ставки «зеленого» тарифа – 46 евроцентов за 1 кВт-ч электроэнергии. «Дунайская» - солнечная электростанция мощностью 43 мегаватт (МВт) расположена возле села Долиновка в Одесской области Украины. Состоит из 182 380 модулей. Занимает 80 гектар. Построена австрийской компанией Activ Solar.

12 слайд

Описание слайда:

Энергия ветра Преимущество: Ветровой энергетический потенциал велик Недостатки: Работа ветряных электростанций зависит от погоды. К тому же они очень шумны, поэтому крупные установки даже приходится на ночь отключать. Помимо этого, ветряные электростанции создают помехи для воздушного сообщения, и даже для радиоволн. Наконец, для их использования необходимы огромные площади, чем для других типов электрогенераторов.

13 слайд

Описание слайда:

Ветрянная энергетика в Украине Наиболее пригодными для ветровых электростанций (ВЭС) на Украине являются северные области и Крым. На начало 2008 года суммарная мощность ВЭС Украины составляла 89 МВт. Все украинские ВЭС были построены в рамках выполнения «Комплексной программы строительства ветровых электростанций», принятой правительством Украины в 1997 году и предвидя к 2010 году ввод в эксплуатацию 1990 МВт ветроэнергетических мощностей. В основном эти ВЭС мощностью 107,5 кВт, которые выпускаются в Украине по лицензии американской компании «Кенетик Виндпауер». С июня 2003 года в Украине начался ввод в эксплуатацию ветровых энергетических установок бельгийской компании «Турбовиндз» мощностью 600 кВт.

14 слайд

Описание слайда:

Геотермальная энергетика базируется на использовании теплоты Земли. Недостаток: Слабая концентрация Преимущества: Запасы неисчерпаемы, безвредна, экономична В гейзере заключена огромная энергия – необходимо только суметь ею воспользоваться.

15 слайд

Описание слайда:

Геотермальная энергия в Украине Украина имеет в своем распоряжении значительные ресурсы геотермальной энергии, потенциальные запасы которых оцениваются величиной 1022 Дж. Что эквивалентно запасам топлива 3,4·1011 т у.т. По разным оценкам ресурсы геотермальной теплоты с учетом разведанных запасов и кпд преобразования геотермальной энергии смогут обеспечить работу геоТЭС общей мощностью до 200 - 250 млн. кВт (при глубинах бурения буровых скважин до 7 км и периодах работы станций до 50 лет) и систем геотермального теплоснабжения общей мощностью до 1,2-1,5 млрд. кВт (при глубинах бурения буровых скважин до 4 км и периодах работы систем до 50 лет).

16 слайд

Описание слайда:

Энергия рек Данное направление не нов, в Украине уже существуют гидроэлектростанции на малых реках. Существуют даже целые регионы, где жизнь населения зависит от доставки углеводородного топлива, а в то же время на месте являются малые реки, имеющие достаточный запас воды. Поэтому и целесообразно развивать малую энергетику как альтернативный источник энергии. АР Крым является действительно уникальным в силу своего географического расположения, поскольку освоение потенциала малых рек и использование свободного напора в существующих системах водоснабжения и канализации городов Крыма с использованием установок малой гидроэнергетики поможет решить проблемы улучшения электроснабжения многих потребителей и их экологической безопасности. К объектам малой гидроэнергетики относятся мини-ГЭС - мощностью до100кВт, микро-ГЭС - до 100 кВт и собственные малые ГЭС - 15-25 МВт. Общая установленная мощность малых гидроэлектростанций в Крыму может составлять около 6900 кВт. Эксплуатация малых ГЭС в Крыму дает возможность дополнительно производить до 5 млн. кВт / ч электроэнергии в год, что эквивалентно ежегодной экономии до 1,5 тыс. т. дефицитного органического топлива.

17 слайд

Описание слайда:

Запасы энергии в Мировом океане колоссальны, ведь две трети земной поверхности (361 млн. км) занимают моря и океаны. Кроме сокровищ затонувших кораблей в океане хранятся неисчислимые сокровища энергии. 2

18 слайд

Описание слайда:

Энергия приливов Использование энергии приливов началось уже в ХΙ в. для работы мельниц и лесопилок на берегах Белого и Северного морей. До сих пор подобные сооружения служат жителям ряда прибрежных стран. Сейчас исследования по созданию приливных электростанций (ПЭС) ведутся во многих странах мира. Два раза в сутки в одно и то же время уровень океана то поднимается, то опускается. Это гравитационные силы Луны и Солнца притягивают к себе массы воды. Вдали от берега колебания уровня воды не превышают 1 м, но у самого берега они могут достигать 13 м.

19 слайд

Описание слайда:

Приливные электростанции работают по следующему принципу: в устье реки или заливе строится плотина, в корпусе которой установлены гидроагрегаты. За плотиной создается приливный бассейн, который наполняется приливным течением, проходящим через турбины. При отливе поток воды устремляется из бассейна в море, вращая турбины в обратном направлении. Считается экономически целесообразным строительство ПЭС в районах с приливными колебаниями уровня моря не менее 4 м. Проектная мощность ПЭС зависит от характера прилива в районе строительства станции, от объема и площади приливного бассейна, от числа турбин, установленных в теле плотины.

20 слайд

Описание слайда:

Водород – энергия будущего " Я верю, что водород и кислород в виде воды будет использован как неисчерпаемый источник тепла и света" Жюль Верн.

21 слайд

Описание слайда:

Свойства Водорода Водород - простейший и наиболее распространенный химический элемент во Вселенной. Это бесцветный газ, без вкуса и запаха, не ядовит. Каждая молекула водорода состоит из двух атомов водорода. Газообразный водород в 14 раз легче воздуха, кроме того, он обладает наибольшей энергией на единицу массы по сравнению с остальными видами топлива На нашей планете водород широко распространен, но встречается только в соединении с другими элементами. Соединение с кислородом образует воду, а соединение с углеродом – углеводороды, такие как бензин, дизтопливо, природный газ, пропан и множество других. Водород – лучший энергоноситель для электромобилей на топливных элементах или существующих автомобилей с двигателями внутреннего сгорания. Водород в составе воды

22 слайд

Описание слайда:

Экологически чистое топливо При сгорании водорода выделяется тепло, обыкновенная вода и ничтожное количество оксидов азота. Водородное топливо не содержит углерод, поэтому его использование не увеличивает содержание в атмосфере парниковых газов, таких как углекислого и угарного газов. Сгорание водорода не приводит к разрушению озонового слоя и образованию кислотных дождей. Переход на использование водорода как энергоносителя может восстановить экологию атмосферы, особенно крупных мегаполисов. Водород – единственное по-настоящему экологически чистое химическое топливо.

23 слайд

Описание слайда:

сахарный тростник который используется для приготовление этанола. Этанол используется как топливо, в качестве растворителя и как наполнитель в спиртовых термометрах.

24 слайд

Описание слайда:

Получение Водорода Любой водородосодержащий материал может быть потенциальным источником топлива для топливных элементов. Углеводородное топливо - метанол, этанол, природный газ, продукты нефтеперегонки и сжиженный пропан - могут отдавать водород при облагораживании нефтепродуктов путем дополнительной обработки. Водород может быть извлечен из биогаза или других соединений, не содержащих углерод. Можно получать водород из воды с помощью электрического тока. Это процесс называют электролизом Источники водорода:

25 слайд

27 слайд

Описание слайда:

Хранение водорода Проблема хранения водорода в настоящее время успешно решается исследователями и производителями автомобилей. Водород можно хранить почти также, как бензин или пропан, однако требуются баллоны, выдерживающие высокое давление. Еще один способ хранения водорода - в виде гидридов (химических соединений с другими веществами) под небольшим давлением или вообще при атмосферном давлении. Водород также можно хранить в виде жидкости, но для этого его потребуется охладить до минус 183 градусов по Цельсию. Большая энергия требуется для такого сжижения водорода, поэтому гораздо удобнее газообразная форма.

28 слайд

Описание слайда:

Безопасность водорода Водород вырабатывается в промышленных масштабах США уже более 50 лет и этот опыт показал возможность его безопасного производства и транспортировки. В XX веке водород использовался как бытовой газ в США, им по сей день пользуются более 500 тыс. семей в Японии. Водородная промышленность США продемонстрировала образцовый уровень безопасности за последние 50 лет и требования по безопасности постоянно растут. К слову о безопасности бензина. От возгорания бензина в 1986 году в США погибло 760 человек. Каждый год происходит более 140 тыс. возгораний автомобилей на бензине. Водород гораздо легче воздуха и быстро растворяется, поэтому в случае утечки на открытом воздухе он поднимается вверх и мгновенно разбавляется до невзрывоопасной концентрации. Будучи подожжен, водород горит при более низкой температуре, чем пары бензина, таким образом, значительно уменьшая риск возгорания окружающих предметов. Наконец, водород не загрязняет почву, как и воду, и воздух.

29 слайд

Описание слайда:

Ford на водородном двигателе разогнался до 331 км. в час В США на соляном озере Бонневилл автомобиль компании Ford - Fusion Hydrogen 999 – установил новый мировой рекорд скорости для машин, оснащенных водородным двигателем. Такой «Форд» под управлением известного гонщика Рика Бернса, смог разогнаться до 207 миль в час (331 километр в час). Ford Fusion Hydrogen 999 – это первый в мире гоночный автомобиль, построенный на серийной базе и оснащенный электродвигателем мощностью 770 лошадиных сил, который питает «водородная» установка на топливных ячейках. По заявлению представителей американской компании, эта машина - результат 10-летних исследований в области водородных технологий, а на ее постройку ушло более года.




Энергия ветра. Энергия ветра использует силу ветра для приведения в движение лопасти ветровых турбин. Вращения лопаток турбины преобразуется в электрический ток с помощью электрического генератора. В старой мельнице, энергия ветра была использована, чтобы включить механические машины, чтобы выполнять физическую работу, например, дробление зерна. Теперь, электрические токи, запряженных крупномасштабных ветровых электростанций используют в национальных электрических сетях, а также небольшие отдельные турбины, используют для обеспечения электроэнергией отдаленных местностей или индивидуального дома.


Плюсы. Энергия ветра не производит никакого загрязнения окружающей среды, так как ветер является возобновляемым источником энергии. Ветровые электростанции могут быть построены от берега. Минусы. Энергия ветра является прерывистой. Если скорость ветра уменьшается движение турбины замедляется и энергии вырабатывается меньше. Большие ветровые электростанции могут иметь негативное влияние на декорации.




Энергия солнца. Солнечная энергия используется обычно для отопления, приготовления пищи, производства электроэнергии, и даже в опреснении морской воды. Солнечные лучи захватываются солнечными установками и солнечный свет преобразуется в электричество, тепло.


Плюсы. Солнечная энергия является возобновляемым ресурсом. До тех пор, пока солнце существует его энергия будет достигать Земли. Солнечная энергетика не загрязняет ни воды, ни воздуха, потому что нет никакой химической реакции, в результате сжигания топлива. Солнечная энергия может использоваться очень эффективно для практических применений, таких как отопление и освещение. Минусы Солнечная энергия не производит энергию, если Солнце не светит. Ночные и пасмурные дни серьезно ограничат количество произведенной энергии. Солнечные электростанции могут быть очень дорогими.






Геотермальная энергетика. Геотермальная энергетика направление энергетики, основанное на производстве электрической и тепловой энергии за счёт тепловой энергии, содержащейся в недрах земли, на геотермальных станциях. Считается возобновляемым энергетическим.


Энергия Земли. Плюсы. Если все сделано правильно, геотермальная энергия не выделяет вредных побочных продуктов. Геотермальные электростанции, как правило, небольшие и имеют незначительное влияние на природный ландшафт. Минусы Если все сделано неправильно, геотермальная энергия может привести к загрязнителям. Неправильное бурение в земле способствует выделению опасных минералов и газов.




Биомасса Органические материалы из растений или животных могут быть использованы для создания энергии, которая может быть преобразована в электричество. Очевидно, что процесс горения все это плохо для окружающей среды, но и органические вещества горят гораздо чище, чем ископаемое топливо.




Вывод. Альтернативные источники энергии, такие как солнечная энергия и ветер могут помочь снизить расходы на электроэнергию. Читайте о существующих альтернативных энергетических технологиях, а также о том, что будущие источники энергии помогут вам эффективно содержать дом. Альтернативные или возобновляемые источники энергии показывают значительные перспективы в снижении количества токсинов, которые являются побочными продуктами использования энергии. Они не только защищают от вредных побочных продуктов, но с использованием альтернативных источников энергии сохраняются многие природные ресурсы, которые мы в настоящее время используем в качестве источников энергии.


Ресурсы Альтернативная энергия. 1. //saveenergy.about.com/od/alternativeenergysources/a/altenergysource.htm&usg=ALkJrhgt0WEAMR14gV7RNqd 1FrqDtz4DKQ 2. //saveenergy.about.com/od/alternativeenergysources/a/altenergysource.htm&usg=ALkJrhgt0WEAMR14gV7RNqd 1FrqDtz4DKQ 1. translate.googleusercontent.com/translate_c?hl=ru&langpair=en%7Cru&rurl=translate.google.ru&u= Energy-Systems.htm&usg=ALkJrhg7W0B9ajHdq0T7ZDs1-HFcNJ2zqA Возобновляемая энергия.

Загрузка...