lampalupa.ru

Функция y ax2 bx c ее свойства. Функции и графики

Приведены справочные данные по показательной функции - основные свойства, графики и формулы. Рассмотрены следующие вопросы: область определения, множество значений, монотонность, обратная функция, производная, интеграл, разложение в степенной ряд и представление посредством комплексных чисел.

Содержание

Свойства показательной функции

Показательная функция y = a x , имеет следующие свойства на множестве действительных чисел () :
(1.1) определена и непрерывна, при , для всех ;
(1.2) при a ≠ 1 имеет множество значений ;
(1.3) строго возрастает при , строго убывает при ,
является постоянной при ;
(1.4) при ;
при ;
(1.5) ;
(1.6) ;
(1.7) ;
(1.8) ;
(1.9) ;
(1.10) ;
(1.11) , .

Другие полезные формулы.
.
Формула преобразования к показательной функции с другим основанием степени:

При b = e , получаем выражение показательной функции через экспоненту:

Частные значения

, , , , .

y = a x при различных значениях основания a .

На рисунке представлены графики показательной функции
y(x) = a x
для четырех значений основания степени : a = 2 , a = 8 , a = 1/2 и a = 1/8 . Видно, что при a > 1 показательная функция монотонно возрастает. Чем больше основание степени a , тем более сильный рост. При 0 < a < 1 показательная функция монотонно убывает. Чем меньше показатель степени a , тем сильнее убывание.

Возрастание, убывание

Показательная функция, при является строго монотонной, поэтому экстремумов не имеет. Основные ее свойства представлены в таблице.

y = a x , a > 1 y = a x , 0 < a < 1
Область определения - ∞ < x < + ∞ - ∞ < x < + ∞
Область значений 0 < y < + ∞ 0 < y < + ∞
Монотонность монотонно возрастает монотонно убывает
Нули, y = 0 нет нет
Точки пересечения с осью ординат, x = 0 y = 1 y = 1
+ ∞ 0
0 + ∞

Обратная функция

Обратной для показательной функции с основанием степени a является логарифм по основанию a .

Если , то
.
Если , то
.

Дифференцирование показательной функции

Для дифференцирования показательной функции, ее основание нужно привести к числу e , применить таблицу производных и правило дифференцирования сложной функции.

Для этого нужно использовать свойство логарифмов
и формулу из таблицы производных :
.

Пусть задана показательная функция:
.
Приводим ее к основанию e :

Применим правило дифференцирования сложной функции . Для этого вводим переменную

Тогда

Из таблице производных имеем (заменим переменную x на z ):
.
Поскольку - это постоянная, то производная z по x равна
.
По правилу дифференцирования сложной функции:
.

Производная показательной функции

.
Производная n-го порядка:
.
Вывод формул > > >

Пример дифференцирования показательной функции

Найти производную функции
y = 3 5 x

Решение

Выразим основание показательной функции через число e .
3 = e ln 3
Тогда
.
Вводим переменную
.
Тогда

Из таблицы производных находим:
.
Поскольку 5ln 3 - это постоянная, то производная z по x равна:
.
По правилу дифференцирования сложной функции имеем:
.

Ответ

Интеграл

Выражения через комплексные числа

Рассмотрим функцию комплексного числа z :
f(z) = a z
где z = x + iy ; i 2 = - 1 .
Выразим комплексную постоянную a через модуль r и аргумент φ :
a = r e i φ
Тогда


.
Аргумент φ определен не однозначно. В общем виде
φ = φ 0 + 2 πn ,
где n - целое. Поэтому функция f(z) также не однозначна. Часто рассматривают ее главное значение
.

Урок: как построить параболу или квадратичную функцию?

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Парабола — это график функции описанный формулой ax 2 +bx+c=0.
Чтобы построить параболу нужно следовать простому алгоритму действий:

1) Формула параболы y=ax 2 +bx+c ,
если а>0 то ветви параболы направленны вверх ,
а то ветви параболы направлены вниз .
Свободный член c эта точке пересекается параболы с осью OY;

2) , ее находят по формуле x=(-b)/2a , найденный x подставляем в уравнение параболы и находим y ;

3) Нули функции или по другому точки пересечения параболы с осью OX они еще называются корнями уравнения. Чтобы найти корни мы уравнение приравниваем к 0 ax 2 +bx+c=0 ;

Виды уравнений:

a) Полное квадратное уравнение имеет вид ax 2 +bx+c=0 и решается по дискриминанту;
b) Неполное квадратное уравнение вида ax 2 +bx=0. Чтобы его решить нужно вынести х за скобки, потом каждый множитель приравнять к 0:
ax 2 +bx=0,
х(ax+b)=0,
х=0 и ax+b=0;
c)Неполное квадратное уравнение вида ax 2 +c=0. Чтобы его решить нужно неизвестные перенести в одну сторону, а известные в другую. x =±√(c/a);

4) Найти несколько дополнительных точек для построения функции.

ПРАКТИЧЕСКАЯ ЧАСТЬ

И так теперь на примере разберем все по действиям:
Пример №1:
y=x 2 +4x+3
c=3 значит парабола пересекает OY в точке х=0 у=3. Ветви параболы смотрят вверх так как а=1 1>0.
a=1 b=4 c=3 x=(-b)/2a=(-4)/(2*1)=-2 y= (-2) 2 +4*(-2)+3=4-8+3=-1 вершина находится в точке (-2;-1)
Найдем корни уравнения x 2 +4x+3=0
По дискриминанту находим корни
a=1 b=4 c=3
D=b 2 -4ac=16-12=4
x=(-b±√(D))/2a
x 1 =(-4+2)/2=-1
x 2 =(-4-2)/2=-3

Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=-2

х -4 -3 -1 0
у 3 0 0 3

Подставляем вместо х в уравнение y=x 2 +4x+3 значения
y=(-4) 2 +4*(-4)+3=16-16+3=3
y=(-3) 2 +4*(-3)+3=9-12+3=0
y=(-1) 2 +4*(-1)+3=1-4+3=0
y=(0) 2 +4*(0)+3=0-0+3=3
Видно по значениям функции,что парабола симметрична относительно прямой х=-2

Пример №2:
y=-x 2 +4x
c=0 значит парабола пересекает OY в точке х=0 у=0. Ветви параболы смотрят вниз так как а=-1 -1 Найдем корни уравнения -x 2 +4x=0
Неполное квадратное уравнение вида ax 2 +bx=0. Чтобы его решить нужно вынести х за скобки, потом каждый множитель приравнять к 0.
х(-x+4)=0, х=0 и x=4.

Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=2
х 0 1 3 4
у 0 3 3 0
Подставляем вместо х в уравнение y=-x 2 +4x значения
y=0 2 +4*0=0
y=-(1) 2 +4*1=-1+4=3
y=-(3) 2 +4*3=-9+13=3
y=-(4) 2 +4*4=-16+16=0
Видно по значениям функции,что парабола симметрична относительно прямой х=2

Пример №3
y=x 2 -4
c=4 значит парабола пересекает OY в точке х=0 у=4. Ветви параболы смотрят вверх так как а=1 1>0.
a=1 b=0 c=-4 x=(-b)/2a=0/(2*(1))=0 y=(0) 2 -4=-4 вершина находится в точке (0;-4)
Найдем корни уравнения x 2 -4=0
Неполное квадратное уравнение вида ax 2 +c=0. Чтобы его решить нужно неизвестные перенести в одну сторону, а известные в другую. x =±√(c/a)
x 2 =4
x 1 =2
x 2 =-2

Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=0
х -2 -1 1 2
у 0 -3 -3 0
Подставляем вместо х в уравнение y= x 2 -4 значения
y=(-2) 2 -4=4-4=0
y=(-1) 2 -4=1-4=-3
y=1 2 -4=1-4=-3
y=2 2 -4=4-4=0
Видно по значениям функции,что парабола симметрична относительно прямой х=0

Подписывайтесь на канал на YOUTUBE , чтобы быть в курсе всех новинок и готовится с нами к экзаменам.

Рассмотрим выражение вида ах 2 +вх+с, где а, в, с - действительные числа, а отлично от нуля. Это математическое выражение известно как квадратный трехчлен.

Напомним, что ах 2 - это старший член этого квадратного трехчлена, а - его старший коэффициент.

Но не всегда у квадратного трехчлена присутствуют все три слагаемые. Возьмем для примера выражение 3х 2 + 2х, где а=3, в=2, с=0.

Перейдем к квадратичной функции у=ах 2 +вх+с, где а, в, с - любые произвольные числа. Эта функция является квадратичной, так как содержит член второй степени, то есть х в квадрате.

Довольно легко построить график квадратичной функции, например, можно воспользоваться методом выделения полного квадрата.

Рассмотрим пример построения графика функции у равно -3х 2 - 6х + 1.

Для этого первое, что вспомним, схему выделения полного квадрата в трехчлене -3х 2 - 6х + 1.

Вынесем -3 у первых двух слагаемых за скобки. Имеем -3 умножить на сумму х квадрат плюс 2х и прибавить 1. Добавив и отняв единицу в скобках, получаем формулу квадрата суммы, которую можно свернуть. Получим -3 умножить на сумму (х+1) в квадрате минус 1 прибавить 1. Раскрывая скобки и приводя подобные слагаемые, выходит выражение: -3 умноженное на квадрат суммы (х+1) прибавить 4.

Построим график полученной функции, перейдя к вспомогательной системе координат с началом в точке с координатами (-1; 4).

На рисунке из видео эта система обозначена пунктирными линиями. Привяжем функцию у равно -3х 2 к построенной системе координат. Для удобства возьмем контрольные точки. Например, (0;0), (1;-3), (-1;-3), (2;-12), (-2;-12). При этом отложим их в построенной системе координат. Полученная при построении парабола является необходимым нам графиком. На рисунке это красная парабола.

Применяя метод выделения полного квадрата, мы имеем квадратичную функцию вида: у = а*(х+1) 2 + m.

График параболы у = ах 2 + bx + c легко получить из параболы у=ах 2 параллельным переносом. Это подтверждено теоремой, которую можно доказать, выделив полный квадрат двучлена. Выражение ах 2 + bx + c после последовательных преобразований превращается в выражение вида: а*(х+l) 2 + m. Начертим график. Выполним параллельное перемещение параболы у = ах 2 , совмещая вершину с точкой с координатами (-l;m). Важно то, что х= -l, а значит -b/2а. Значит эта прямая является осью параболы ах 2 + bx + c, ее вершина находится в точке с абсциссой х нулевое равно минус в, деленное на 2а, а ордината вычисляется по громоздкой формуле 4ас - b 2 /. Но эту формулу запоминать не обязательно. Так как, подставив значение абсциссы в функцию, получим ординату.

Для определения уравнения оси, направления ее ветвей и координат вершины параболы, рассмотрим следующий пример.

Возьмем функцию у = -3х 2 - 6х + 1. Составив уравнение оси параболы, имеем, что х=-1. А это значение является координатой х вершины параболы. Осталось найти только ординату. Подставив значение -1 в функцию, получим 4. Вершина параболы находится в точке (-1; 4).

График функции у = -3х 2 - 6х + 1 получен при параллельном переносе графика функции у = -3х 2 , значит, и ведет себя аналогично. Старший коэффициент отрицателен, поэтому ветви направлены вниз.

Мы видим, что для любой функции вида y = ах 2 + bx + c, самым легким является последний вопрос, то есть направление веток параболы. Если коэффициент а положительный, то ветви - вверх, а если отрицательный, то - вниз.

Следующим по сложности идет первый вопрос, потому что требует дополнительных вычислений.

И самый сложный второй, так как, кроме вычислений, еще необходимы знания формул, по которым находятся х нулевое и у нулевое.

Построим график функции у = 2х 2 - х + 1.

Определяем сразу - графиком является парабола, ветви направлены вверх, так как старший коэффициент равен 2, а это положительное число. По формуле находим абсциссу х нулевое, она равна 1,5. Для нахождения ординаты вспомним, что у нулевое равно функции от 1,5, при вычислении получим -3,5.

Вершина - (1,5;-3,5). Ось - х=1,5. Возьмем точки х=0 и х=3. у=1. Отметим данные точки. По трем известным точкам строим искомый график.

Для построения графика функции ах 2 + bx + c необходимо:

Найти координаты вершины параболы и отметить их на рисунке, потом провести ось параболы;

На оси ох взять две симметричные, относительно оси, параболы точки, найти значение функции в этих точках и отметить их на координатной плоскости;

Через три точки построить параболу, при необходимости можно взять еще несколько точек и строить график по ним.

В следующем примере мы научимся находить наибольшее и наименьшее значения функции -2х 2 + 8х - 5 на отрезке .

По алгоритму: а=-2, в=8, значит х нулевое равно 2, а у нулевое - 3, (2;3) - вершина параболы, а х=2 является осью.

Возьмем значения х=0 и х=4 и найдем ординаты этих точек. Это -5. Строим параболу и определяем, что наименьшее значение функции -5 при х=0, а наибольшее 3, при х=2.

Урок по теме «Функция y=ax^2, ее график и свойства» изучается в курсе алгебры 9 класса в системе уроков по теме «Функции». Данный урок требует тщательной подготовки. А именно, таких методов и средств обучения, которые дадут поистине хорошие результаты.

Автор данного видеоурока позаботился о том, чтобы помочь учителям при подготовке к урокам по этой теме. Он разработал видеоурок с учетом всех требований. Материал подобран по возрасту школьников. Он не перегружен, но достаточно емок. Автор подробно рассказывает материал, останавливаясь на более важных моментах. Каждый теоретический пункт сопровождается примером, чтобы восприятие учебного материала было гораздо эффективнее и качественнее.

Урок может быть использован учителем на обычном уроке алгебры в 9 классе в качестве определенного этапа урока - объяснение нового материала. Учителю не придется в этот период ничего говорить или рассказывать. Ему достаточно включить этот видеоурок и следить за тем, чтобы обучающиеся внимательно слушали и записывали важные моменты.

Урок может использоваться и школьниками при самостоятельной подготовке к уроку, а также для самообразования.

Длительность урока составляет 8:17 минут. В начале урока автор замечает, что одной из важных функций является квадратичная функция. Затем вводится квадратичная функция с математической точки зрения. Дается ее определение с пояснениями.

Далее автор знакомит обучающихся с областью определения квадратичной функции. На экране появляется правильная математическая запись. После этого автор рассматривает пример квадратичной функции на реальной ситуации: за основу взята физическая задача, где показано, как зависит путь от времени при равноускоренном движении.

После этого автор рассматривает функцию y=3x^2. На экране появляется построение таблицы значений этой функции и функции y=x^2. Согласно данным этих таблиц строятся графики функций. Здесь же в рамке появляется пояснение, как получается график функции y=3x^2 из y=x^2.

Рассмотрев два частных случая, примера функции y=ax^2, автор приходит к правилу, как получается график этой функции из графика y=x^2.

Далее рассматривается функция y=ax^2, где a<0. И, подобно тому, как строились графики функций до этого, автор предлагает построить график функции y=-1/3 x^2. При этом он строит таблицу значений, строит графики функций y=-1/3 x^2 и, замечая при этом закономерность расположения графиков между собой.

Затем из свойств выводятся следствия. Их четыре. Среди них появляется новое понятие - вершины параболы. Далее следует замечание, где говорится, какие преобразования возможны для графика данной функции. После этого говорится о том, как получается график функции y=-f(x) из графика функции y=f(x), а также y=af(x) из y=f(x).

На этом урок, содержащий учебный материал заканчивается. Остается его закрепить, подобрав соответствующие задания в зависимости от способностей обучающихся.

Презентация «Функция y=ax 2 , ее график и свойства» является наглядным пособием, которое создано для сопровождения объяснения учителя по данной теме. В данной презентации подробно рассматривается квадратичная функция, ее свойства, особенности построения графика, практическое приложение используемых методов решения задач в физике.

Предоставляя высокую степень наглядности, данный материал поможет учителю повысить эффективность обучения, даст возможность более рационально распределить время на уроке. При помощи анимационных эффектов, выделения понятий и важных моментов цветом, внимание учеников акцентируется на изучаемом предмете, достигается лучшее запоминание определений и хода рассуждения при решении задач.


Презентация начинается с ознакомления с названием презентации и понятием квадратичной функции. Подчеркивается важность данной темы. Ученикам предлагается запомнить определение квадратичной функции как функциональной зависимости вида y=ax 2 +bx+c, в которой является независимой переменной, а - числа, при этом a≠0. Отдельно на слайде 4 отмечается для запоминания, что областью определения данной функции является вся ось действительных значений. Условно данное утверждения обозначается D(x)=R.


Примером квадратичной функции является важное ее приложение в физике - формула зависимости пути при равноускоренном движении от времени. Параллельно на уроках физики ученики изучают формулы различных видов движения, поэтому умение решать подобные задачи им будет необходимо. На слайде 5 ученикам напоминается, что при движении тела с ускорением и на начало отсчета времени известен пройденный путь и скорость движения, то функциональная зависимость, представляющая такое движение, будет выражаться формулой S=(at 2)/2+v 0 t+S 0 . Ниже приводится пример превращения данной формулы в заданную квадратичную функцию, если значения ускорения =8, начальной скорости =3 и начального пути =18. В этом случае функция приобретет вид S=4t 2 +3t+18.


На слайде 6 рассматривается вид квадратичной функции y=ax 2 , в котором она представляется при. Если же =1, то квадратичная функция имеет вид y=x 2 . Отмечается, что графиком данной функции будет парабола.

Следующая часть презентации посвящена построению графика квадратичной функции. Предлагается рассмотреть построение графика функции y=3x 2 . Сначала в таблице отмечается соответствие значений функции значениям аргумента. Отмечается, что отличие построенного графика функции y=3x 2 от графика функции y=x 2 в том, что каждое значение ее будет больше соответствующего в три раза. В табличном представлении эта разница хорошо отслеживается. Рядом в графическом представлении также хорошо заметна разница в сужении параболы.


На следующем слайде рассматривается построение графика квадратичной функции y=1/3 x 2 . Для построения графика необходимо в таблице указать значения функции в ряде ее точек. Отмечается, что каждое значение функции y=1/3 x 2 меньше соответствующего значения функции y=x 2 в 3 раза. Данная разница, кроме таблицы, хорошо видна и на графике. Ее парабола более расширена относительно оси ординат, чем парабола функции y=x 2 .


Примеры помогают усвоить общее правило, согласно которому можно затем более просто и быстро производить построение соответствующих графиков. На слайде 9 выделено отдельно правило, что график квадратичной функции y=ax 2 можно построить в зависимости от значения коэффициента растяжением или сужением графика. Если a>1, то график растягивается от оси х в раз. Если же 0

Вывод о симметричности графиков функций y=ax 2 и y=-ax2 (при ≠0) относительно оси абсцисс отдельно выделен на слайде 12 для запоминания и наглядно отображен на соответствующем графике. Далее понятие о графике квадратичной функции y=x 2 распространяется на более общий случай функции y=ax 2 , утверждая, что такой график также будет называться параболой.


На слайде 14 рассматриваются свойства квадратичной функции y=ax 2 при положительном. Отмечается, что ее график проходит через начало координат, а все точки, кроме, лежат в верхней полуплоскости. Отмечена симметричность графика относительно оси ординат, уточняя, что противоположным значениям аргумента соответствуют одинаковые значения функции. Указано, что промежуток убывания данной функции (-∞;0], а возрастание функции выполняется на промежутке. Значения данной функции охватывают всю положительную часть действительной оси, нулю она равна в точке, а наибольшего значения не имеет.

На слайде 15 описываются свойства функции y=ax 2 , если отрицательный. Отмечается, что ее график также проходит через начало координат, но все его точки, кроме, лежат в нижней полуплоскости. Отмечена симметричность графика относительно оси, и противоположным значениям аргумента соответствуют равные значения функции. Возрастает функция на промежутке, убывает на. Значения данной функции лежат в промежутке, нулю она равна в точке, а наименьшего значения не имеет.


Обобщая рассмотренные характеристики, на слайде 16 выводится, что ветви параболы направлены вниз при, а вверх - при. Парабола симметрична относительно оси, а вершина параболы располагается в точке ее пересечения с осью. У параболы y=ax 2 вершина - начало координат.

Также важный вывод о преобразованиях параболы отображается на слайде 17. На нем представлены варианты преобразований графика квадратичной функции. Отмечено, что график функции y=ax 2 преобразуется симметричным отображением графика относительно оси. Также возможно сжатие или растяжение графика относительно оси.

На последнем слайде делаются обобщающие выводы о преобразованиях графика функции. Представлены выводы о том, что график функции получается симметрическим преобразованием относительно оси. А график функции получается из сжатием или растяжением исходного графика от оси. При этом растяжение от оси в раз наблюдается в случае, когда. Сжатием к оси в 1/a раз график образуется в случае.


Презентация «Функция y=ax 2 , ее график и свойства» может быть использована учителем в качестве наглядного пособия на уроке алгебры. Также данное пособие хорошо раскрывает тему, давая углубленное понимание предмета, поэтому может быть предложена для самостоятельного изучения учениками. Также данный материал поможет учителю дать объяснение в ходе дистанционного обучения.

Загрузка...