lampalupa.ru

Определение тепловых эффектов растворения веществ в воде. Теплота растворения солей и её определение

Раствором называют гомогенную систему, состоящую из двух или большего числа компонентов. При переходе вещества в раствор происходит разрыв межмолекулярных и ионных связей кристаллической решетки твердого вещества и переход его в раствор в виде отдельных молекул или ионов, которые равномерно распределяются среди молекул растворителя.

Для разрушения кристаллической решетки вещества необходимо затратить большую энергию. Эта энергия освобождается в результате гидратации (сольватации) ионов и молекул, т. е. химического взаимодействия растворяемого вещества с водой (или вообще с растворителем).

Значит, растворимость вещества зависит от разности величин энергии гидратации (сольватации) и энергии кристаллической решетки вещества.

Энергия растворения ∆Н раст - энергия, поглощающаяся (или выделяющаяся) при растворении 1 моль вещества в таком объеме растворителя, дальнейшее прибавление которого не вызывает изменения теплового эффекта.

Общий тепловой эффект растворения зависит от тепловых эффектов:

· а) разрушения кристаллической решетки (процесс всегда идет с затратой энергии ∆Н 1 >0);

· б) диффузии растворенного вещества в растворителе (затрата энергии ∆Н 2 >0);

· в) сольватации (гидратации) (выделение теплоты, ∆Н 3 <0, так как между растворителем и растворенным веществом образуются непрочные химические связи, что всегда сопровождается выделением энергии).

Общий тепловой эффект растворения ∆Н p будет равен сумме названных тепловых эффектов

Энергия растворения определяется по формуле 1.1:

∆Н pac т =∆Н к p . р. + ∆Н c , (1.1)

где ∆Н раст - энергия растворения вещества, кДж/моль;

∆Н c - энергия взаимодействия растворителя с растворяемым

веществом (энергия сольватации), кДж/моль;

∆Н к p .р. - энергия разрушения кристаллической решетки,

кДж/моль.

Если энергия разрушения кристаллической решетки больше энергии сольватации, то процесс растворения будет эндотермическим процессом, поскольку энергия, затраченная на разрушение кристаллической структуры, не будет скомпенсирована энергией, выделяющейся при сольватации.

Если энергия разрушения кристаллической решетки меньше энергии сольватации, то процесс растворения будет экзотермическим процессом, поскольку энергия затраченная на разрушение кристаллической структуры полностью скомпенсирована энергией, выделяющейся при сольватации. Следовательно, в зависимости от соотношения между энергией разрушения кристаллической решетки растворенного вещества и энергией взаимодействия растворенного вещества с растворителем (сольватация) энергия растворения может быть как положительной, так и отрицательной величиной.


Так, при растворении в воде хлорида натрия температура практически не изменяется, при растворении нитрата калия или аммония температура резко снижается, а при растворении гидроксида калия или серной кислоты температура раствора резко повышается.

Растворение твердых веществ в воде чаще бывает процессом эндотермическим, так как во многих случаях при гидратации выделяется теплоты меньше, чем тратится на разрушение кристаллической решетки.

Энергию кристаллической решетки можно рассчитать теоретически. Однако для теоретического расчета энергии сольватации до сих пор нет надежных методов.

Существуют некоторые закономерности, которые связывают растворимость веществ с их составом.

Для солей одного и того же аниона с разными катионами (или наоборот) растворимость будет наименьшей в том случае, когда соль образована ионами одинакового заряда и примерно одинакового размера, т.к. в этом случае энергия ионной кристаллической решетки максимальна.

Например, растворимость сульфатов элементов второй группы периодической системы уменьшается по подгруппе сверху вниз (от магния к барию). Это объясняется тем, что ионы бария и сульфата по размерам больше всего подходят друг к другу. В то время как катионы кальция и магния намного меньше анионов SO 4 2- .

Растворимость гидроксидов этих элементов, наоборот, увеличивается от магнию к бария, потому что радиусы катионов магния и анионов гидроксида практически одинаковые, а катионы бария по размеру очень отличаются от небольших анионов гидроксила.

Однако бывают исключения, например, для оксалатов и карбонатов кальция, стронция, бария и др.

1) используя изменение температуры при растворении.

Количество энергии, выделяющейся при нагревании или охлаждении тела рассчитывается по уравнению (1.2):

, (1.2)

где ∆Н раств. – энергия растворения вещества, кДж/моль;

с А - удельная теплоемкость вещества А, Дж/(г∙К);

m 1 - масса вещества А, г;

∆Т – изменение температуры, град.

ПРИМЕР 1.1 При растворении 8г хлорида аммония в 291г воды температура понизилась на 2 0 . Вычислите теплоту растворения NH 4 C1 в воде, принимая удельную теплоемкость полученного раствора равной теплоемкости воды 4,1870 Дж/(г * К).

Решение:

Используя уравнение (1.2), рассчитаем энергию, поглощаемую 291 г воды при растворении 8г NH 4 C1, т.к. при этом температура уменьшается на 2 0 С, то: ∆Н раств. = -(4,187∙291∙(-2)) = 2436,8 Дж.

Для определения энтальпии растворения NH 4 C1 составляем пропорцию, М (NH 4 C1)=53,49 г/моль:

8г NH 4 Cl - 2436,8 Дж

53,49г NH 4 C1 - х Дж

х = 1629,3Дж = 16,3кДж. Следовательно, растворение NH 4 C1 сопровождается поглощением тепла.

2) используя следствие из закона Гесса: тепловой эффект химической реакции (ΔН 0 х.р.) равен сумме теплот (энтальпий) образования продуктов реакции (ΔH 0 o 6р. . npo д.) минус сумма теплот (энтальпий) образования исходных веществ (ΔН 0 обр. исх.) с учётом коэффициентов перед формулами этих веществ в уравнении реакции.

ΔН 0 х.р. = ΣΔН 0 обр.прод - Σ ΔН 0 обр.исх, (1.3)

ПРИМЕР 1.2 Рассчитайте тепловой эффект реакции растворения алюминия в разбавленной соляной кислоте, если стандартные теплоты образования реагирующих веществ равны (кДж/моль): ∆Н 0 (НС1) { aq } = - 167,5; ∆Н 0 А1С1 3 {а q } = -672,3.

Решение: Реакция растворения А1 в соляной кислоте протекает по уравнению 2А1+6НС1 (aq) =2AlCl 3(aq) +3H 2 . Поскольку алюминий и водород являются простыми веществами, то для них ΔН 0 =0 кДж/моль, то тепловой эффект реакции растворения равен:

∆Н 0 298 =2∙∆Н 0 А1С1 3 {а q } -6∙∆Н 0 НС1 { aq }

∆Н 0 298 =2∙(-672,3)-6∙(-167,56)=-339,2кДж.

Используя следствие из закона Гесса можно определить возможность протекания реакции растворения. В этом случае необходимо рассчитать энергию Гиббса.

ПРИМЕР 1.3 Будет ли растворяться сульфид меди в разбавленной серной кислоте, если энергия Гиббса реагирующих веществ равна (кДж/моль): ∆G 0 (CuS (к))= -48,95; ∆G 0 (H 2 SО 4(aq))=-742,5; ∆G 0 (CuSО 4(aq))= -677,5, ∆G 0 (Н 2 S (г)) = -33,02.

Решение. Для ответа необходимо подсчитать ∆G 0 298 реакции растворения. Возможная реакция растворения CuS в разбавленной H 2 SO 4 протекает по уравнению:

CuS (к) + H 2 SО 4 (aq) = CuSО 4 (aq) + H 2 S (г)

∆G 0 298 =∆G 0 (CuSО 4(aq)) + ∆G 0 (Н 2 S (г)) -∆G 0 (CuS (K)) -∆G 0 (H 2 SО 4(aq))

∆G 0 298 = -677,5-33,02 + 742,5 + 48,95 =80,93 кДж/моль.

Так как ∆G>0, реакция невозможна, т. е. CuS не будет растворяться в разбавленной H 2 SO 4 .

Теплота гидратации ∆Н 0 гидрат. - теплота, выделяемая при взаимодействии 1 моль растворяемого вещества с растворителем - водой.

ПРИМЕР 1.4. При растворении 52,06г ВаС1 2 в 400 моль Н 2 О выделяется 2,16 кДж теплоты, а при растворении 1 моль ВаС1 2 ∙2Н 2 О в 400 моль Н 2 О поглощается 18,49 кДж теплоты. Вычислите теплоту гидратации безводного ВаС1 2 ,

Решение. Процесс растворения безводного ВаС1 2 можно представить следующим образом:

а) гидратация безводной соли ВаС1 2

ВаС1 2 +2Н 2 О = ВаС1 2 ∙2Н 2 О; ∆Н гидр. <0

б) растворение образовавшегося гидрата

BaCl 2 ∙2H 2 О+aq* → ВаС1 2 ∙2Н 2 О (aq); ∆Н раст. >0

Количество теплоты ∆Н 0 , выделяющееся при растворении безводного ВаС1 2 , равно алгебраической сумме тепловых эффектов этих двух процессов:

∆Н 0 == ∆Н 0 гидр +∆Н 0 раств; ∆Н 0 гидр = ∆Н 0 - ∆Н 0 раств

Для вычисления теплоты гидратации безводного хлорида бария надо определить теплоту растворения ВаС1 2 для тех же условий, что и для ВаС1 2 ∙2Н 2 О, т. е. для 1 моль ВаС1 2 (раствор в обоих случаях должен иметь одинаковую концентрацию); M(BaCl 2)=208,25 г/моль

52,06г ВаС1 2 - 2,16кДж

208,25г ВаС1 2 - х кДж

х=8,64 кДж/моль. Следовательно, ∆Н раств =-8,64 кДж/моль.

Тогда ∆Н гидр =18,49+8,64 =27,13 кДж/моль.

Растворение веществ сопровождается различными тепловыми эффектами в зависимости от природы вещества. При растворении в воде, например, гидроксида калия или серной кислоты наблюдается сильное разогревание раствора (теплота выделяется), а при растворении нитрата аммония происходит сильное охлаждение раствора (теплота поглощается). В первом случае протекает экзотермический процесс (?Н < 0), во втором - эндотермический процесс (?H > 0).

Теплота растворения ?H раст в - это количество теплоты, которое выделяется или поглощается при растворении 1 моль вещества. Так, например, при стандартных условиях для гидроксида калия?Н о раств = - 55,65 кДж/моль, а для нитрата аммония?Н о раств = +26,48 кДж/моль.

Теплота растворения - алгебраическая сумма тепловых эффектов всех эндо- и экзотермических стадий процесса.

Рассмотрим механизм растворения хлорида натрия, вещества с ионной кристаллической решеткой (рис.2).

  • 1 стадия . Молекулы воды являются диполями, поэтому за счет электростатического притяжения ориентируются соответствующими полюсами на положительно и отрицательно заряженные ионы натрия и хлора, находящиеся на поверхности кристалла, ?Н ориен? 0.
  • 2 стадия . Между молекулами воды и ионами натрия и хлора образуются химические связи за счет ион-дипольного взаимодействия, поэтому этот процесс сопровождается выделением энергии, ?Н гидр
  • 3 стадия . Возникновение таких связей и выделение энергии приводит к тому, что связи в кристаллической решетке ослабевают, и ионы в гидратированном виде уходят в раствор, покидая поверхность кристалла. Процесс отрыва ионов от кристалла - эндотермический, ?Н отрыва > 0.
  • 4 стадия . Диффузия гидратированных ионов по всему объему раствора, ?Н дифф? 0.

Если энергия разрушения кристаллической решетки меньше энергии гидратации растворённого вещества, то растворение идёт с выделением теплоты. Если энергия разрушения кристаллической решётки больше энергии гидратации, то растворение протекает с поглощением теплоты.

В случае идеальных растворов тепловые и объемные эффекты отсутствуют: т.е. ?Н раств = 0, ?V = 0, химические связи не образуется, но энтропия - увеличивается.

Процесс взаимодействия растворителя и растворённого вещества, как говорилось ранее, называется сольватацией, а если растворителем является вода - гидратацией . В результате химического взаимодействия растворенного вещества с растворителем образуются соединения, которые называют сольватами (или гидратами , если растворителем является вода). Образование таких соединений роднит растворы с химическими соединениями.

Сольваты (гидраты) образуются за счет донорно-акцепторного, ион-дипольного взаимодействия, за счет водородных связей, а также дисперсионного взаимодействия (при растворении родственных веществ, например бензола и толуола).

Особенно склонны к гидратации, т.е. соединению с молекулами воды, ионы. Ионы присоединяют полярные молекулы воды, в результате образуются гидратированные ионы. Поэтому, например, в растворе ион меди (II) голубой, в безводном сульфате меди он бесцветный. Многие сольваты (гидраты) непрочны и легко разлагаются при выделении их в свободном виде, однако в ряде случаев образуются прочные соединения, которые можно легко выделить из раствора кристаллизацией. При этом выпадают кристаллы, которые содержат молекулы воды.

Кристаллические вещества, содержащие молекулы воды, называются кристаллогидратами , а вода, входящая в состав кристаллогидратов, называется кристаллизационной . Кристаллогидратами являются многие природные минералы. Ряд веществ (в том числе и органических) получаются в чистом виде только в форме кристаллогидратов.

Цель работы - определение теплового эффекта процесса растворения соли в воде и теплоты реакции нейтрализации с использованием калориметра с изотермической оболочкой.

Относительно изучаемых процессов нужно иметь в виду следующее: химические реакции, в отличие от фазовых пре­вращений, сопровождаются изменением состава веществ в системе. Промежуточное положение между ними занимают процессы растворения. Эти процессы, если не знать их природы, представляются трудно объяснимыми. Например, чтобы разрушить кристаллы хлористого натрия на отдельные ионы, требуется затратить довольно значительную энергию (ΔЕ кр):

NaCl тв → Na + газ + Сl – газ; DН° разруш = +777,26 кДж/моль. (18)

По первому закону термохимии, обратный процесс образования кристалла из ионов будет иметь экзотермический характер, то есть DН° образ = – 777,26 кДж/моль.

Вместе с тем при взаимодействии с водой хлорида натрия идет процесс соединения ионов Na + и Сl – с полярными моле­кулами воды, который рассматривается как процесс гидратации ионов, он сопровождается выделением значительного количества теплоты.

В таблице 11 приведены значения энергий связи Е св в некоторых веществах и энтальпий гидратации DН° гидр ионов при стандартных условиях.

В результате процессы растворения ионных соединений рассматриваются как обычные химические реакции и одно­значно характеризуются тепловыми эффектами. Для нахождения их необходимо или провести экспериментальное исследование, например, калориметрическое, или использовать табличные значения теплот образования всех гидратированных ионов и соединений, участвующих в процессе растворения.

Обычно теплоту растворения относят к растворению одного моля ве­щества. При этом предполагается, что образуется бесконечно разбавленный раствор. В итоге механизм растворения представляется как процесс разрушения кристаллической решетки вещества под действием растворителя (эндотермический эффект) и как процесс гидратации образующихся ионов (экзотермический эффект). Суммарный тепловой эффект определяется именно этими процессами.

Таблица 11.

Ис­пользуя первое следствие из второго закона термохимии, можно рассчитать по имеющимся в табл.11. данным тепловые эффекты растворения указанных веществ, а также теплоту нейтрализации кислоты щелочью.

Например, энтальпия растворения кристаллического хлорида натрия в воде находится по уравнению:

NaCl тв aqua → Na + aq + Сl – aq , (19)

DН° p аств. = DН° гидр (Na + aq) + DН° гидр (Cl – aq) – = (20)

420,1 - 353,7 - (- 777,3) = + 3,5 кДж/моль.

Положительный знак теплового эффекта указывает на то, что процесс растворения протекает с поглощением теплоты и температура раствора при этом должна понижаться.

Теплотой реакции нейтрализа­ции называют количество теплоты, которое выделяется при взаимодействии 1 эквивалента сильной кислоты с 1 эквивалентом сильного основания. При этом образуется 1 эквивалент жидкой воды.

Найдено, что в случае разбавленных растворов теплота реакций сильных оснований (таких, как NaOH и КОН) с сильными кислотами (например, НСl или H 2 SO 4) не зависит от природы кислоты и основания. Такое постоянство теплоты нейтрализации объясняется практически полной диссоциацией на ионы сильных кис­лот и оснований, а также образуемых в результате реакции нейтрализации солей. Поэтому при смешивании разбавленных растворов сильной кислоты и сильного основания фактически происходит только одна химическая реакция, а именно: между гидратированными ионами гидроксония H 3 О + aq и гидроксила ОН – а q:

1/2 H 3 О + aq + 1/2 ОН – а q → Н 2 О жидк, (21)

DН° нейтр = DН° образ (Н–OН) – (1/2)·

= – 459,8 – (1/2) · (– 477,8 –– 330,0) = – 55,9 кДж/моль. (22)

Отрицательный знак теплового эффекта говорит о том, что реакция нейтрализации протекает с выделением теплоты и температура раствора при этом должна повышаться.


В каждом веществе запасено определенное количество энергии. С этим свойством веществ мы сталкиваемся уже за завтраком, обедом и ужином, как так как продукты питания позволяют нашему организму использовать энергию самых разнообразных химических соединений, содержащихся в пище. В организме эта энергия преобразуется в движение, работу, идет на поддержание постоянной (и довольно высокой!) температуры тела.


Энергия химических соединений сосредоточена главным образом в химических связях. Чтобы разрушить связь между двумя атомами, требуется ЗАТРАТИТЬ ЭНЕРГИЮ. Когда химическая связь образуется, энергия ВЫДЕЛЯЕТСЯ. Любая химическая реакция заключается в разрыве одних химических связей и образовании других.


Когда в результате химической реакции при образовании новых связей выделяется энергии БОЛЬШЕ, чем потребовалось для разрушения "старых" связей в исходных веществах, то избыток энергии высвобождается в виде тепла. Примером могут служить реакции горения. Например, природный газ (метан CH 4) сгорает в кислороде воздуха с выделением большого количества теплоты. Реакция даже может идти со взрывом - так много энергии заключено в этом превращении. Такие реакции называются ЭКЗОТЕРМИЧЕСКИМИ от латинского "экзо" - наружу (имея в виду выделяющуюся энергию).


В других случаях на разрушение связей в исходных веществах требуется энергии больше, чем может выделиться при образовании новых связей. Такие реакции происходят только при подводе энергии извне и называются ЭНДОТЕРМИЧЕСКИМИ (от латинского "эндо" - внутрь). Примером является образование оксида углерода (II) CO и водорода H 2 из угля и воды, которое происходит только при нагревании


Таким образом, любая химическая реакция сопровождается выделением или поглощением энергии. Чаще всего энергия выделяется или поглощается в виде теплоты (реже - в виде световой или механической энергии). Эту теплоту можно измерить. Результат измерения выражают в килоджоулях (кДж) для одного МОЛЯ реагента или (реже) для моля продукта реакции. Такая величина называется ТЕПЛОВЫМ ЭФФЕКТОМ РЕАКЦИИ. Например, тепловой эффект реакции сгорания водорода в кислороде можно выразить любым из двух уравнений: 2 H 2 (г) + O 2 (г) = 2 H 2 О(ж) кДж или H 2 (г) + 1/2 O 2 (г) = H 2 О(ж) кДж




Тепловые эффекты химических реакций нужны для многих технических расчетов. Представьте себя на минуту конструктором мощной ракеты, способной выводить на орбиту космические корабли и другие полезные грузы. Самая мощная в мире российская ракета "Энергия" перед стартом на космодроме Байконур. Двигатели одной из её ступеней работают на сжиженных газах - водороде и кислороде. Допустим, вам известна работа (в кДж), которую придется затратить для доставки ракеты с грузом с поверхности Земли до орбиты, известна также работа по преодолению сопротивления воздуха и другие затраты энергии во время полета. Как рассчитать необходимый запас водорода и кислорода, которые (в сжиженном состоянии) используются в этой ракете в качестве топлива и окислителя? Без помощи теплового эффекта реакции образования воды из водорода и кислорода сделать это затруднительно. Ведь тепловой эффект - это и есть та самая энергия, которая должна вывести ракету на орбиту. В камерах сгорания ракеты эта теплота превращается в кинетическую энергию молекул раскаленного газа (пара), который вырывается из сопел и создает реактивную тягу. В химической промышленности тепловые эффекты нужны для расчета количества теплоты для нагревания реакторов, в которых идут эндотермические реакции. В энергетике с помощью теплоты сгорания топлива рассчитывают выработку тепловой энергии. Врачи-диетологи используют тепловые эффекты окисления пищевых продуктов в организме для составления правильных рационов питания не только для больных, но и для здоровых людей - спортсменов, работников различных профессий. По традиции для расчетов здесь используют не джоули, а другие энергетические единицы - калории (1 кал = 4,1868 Дж). Энергетическое содержание пищи относят к какой-нибудь массе пищевых продуктов: к 1 г, к 100 г или даже к стандартной упаковке продукта. Например, на этикетке баночки со сгущенным молоком можно прочитать такую надпись: "калорийность 320 ккал/100 г".


Раздел химии, занимающийся изучением превращения энергии в химических реакциях называется термохимией Существует два закона термохимии: 1. Закон Лавуазье-Лапласа (тепловой эффект прямой реакции всегда равен тепловому эффекту обратной реакции с противоположным знаком.) 2. Закон Г.И. Гесса (тепловой эффект реакции зависит только от начального и конечного состояния веществ и не зависит от промежуточных стадий процесса.


Таким образом, растворение-это физико - химический процесс. Растворение веществ сопровождается тепловым эффектом: выделением (+Q) или поглощением (-Q) теплоты в зависимости от природы веществ. Сам процесс растворения обусловлен взаимодействием частиц растворимого вещества и растворителя.


Опытным путем установить растворение каких веществ в воде сопровождается выделением теплоты (+Q), а каких поглощением (- Q). Материалы: ацетон, сахароза, хлорид натрия, карбонат натрия (безводный и (или) кристаллогидрат), гидрокарбонат натрия, лимонная кислота, глицерин, вода, снег. Оборудование: электронный медицинский термометр или датчик температуры из наборов цифровых датчиков школьных кабинетов химии, физики или биологии.




6 Сахароза Хлорид натрия Карбонат натрия(безводный) Гидрокарбонат натрия Лимонная кислота Глицерин Снег












Работа с одноклассниками Тест 1.При стандартных условиях теплота образования равна 0 для: а) водорода б)воды в)пероксида водорода г) алюминия. 2.Реакция, уравнение которой N2+O2=2NO-Q относится к реакциям: а)эндотермического соединения б)экзотермического соединения в)эндотермического разложения г)экзотермического разложения.


3.Эндотермической является реакция: а) горения водорода б)разложения воды в) горения углерода г)горения метана. 4.Какое определение неверно для данной реакции: 2 NaNO3 (тв.)=2 NaNO2(тв.)+ O2(г.)- Q а)гомогенная б)эндотермическая в)реакция соединения г)окислительно-восстановительная. 5.Основным законом термохимии является закон: а)Гей-Люссака б) Гесса в)Авогадро г)Пруста

Растворение – физико-химический процесс, ведущий к образованию гомогенной системы. Тепловые эффекты, сопровождающие его, являются следствием самых разнообразных причин. Рассмотрим несколько примеров:

А) Процесс растворения в воде жидкостей может сопровождаться такими явлениями, как диссоциация полярных молекул с образованием ионов, возникновением водородных связей между полярными молекулами воды и молекулами веществ, содержащих элементы с высокой электроотрицательностью, гидратацией химических частиц, и т.д.

С 2 Н 5 ОН - Н 2 О

Эта система отвечает образованию идеальных растворов в широком диапазоне концентраций. Процесс растворения должен сопровождаться образованием водородных связей, следовательно, является энергетически выгодным, то есть обладает положительным тепловым эффектом.

СН 3 СООН - Н 2 О

Уксусная кислота является слабой одноосновной кислотой К д = 1,8 10 -5 , следовательно, при растворении в воде какая то часть энергии будет затрачена на диссоциацию молекул (отрицательный тепловой эффект), а часть энергии, наоборот, будет выделяться в виде теплоты при гидратации ионов. Суммарный эффект будет зависеть от соотношения этих величин.

Б) Процесс растворения твердых веществ в воде зависит от типа кристаллической решетки последних. Как правило, растворение ионных кристаллов связано с двумя противоположными эффектами: положительной величиной энергии гидратации ионов и отрицательной – разрушения кристаллической решетки. У молекулярных кристаллов первая составляющая практически отсутствует. При сливании разбавленных растворов солей сильных электролитов теплового эффекта не наблюдается. Если же при этом образуется осадок, наблюдается тепловой эффект осаждения.

Интегральная теплота растворения –это количество теплоты, поглощающееся или выделяющееся при растворении 1 моль вещества в очень большом (300 моль/ моль вещества) количестве растворителя.

Пример расчетной задачи:

Вычислить интегральную теплоту растворения хлорида аммония, если при растворении 1,473 г соли в 528,5 г воды температура понизилась на 0,174 о С. Массовая теплоемкость раствора 4,109 Дж/г. К. Теплоемкость калориметра 181,4 Дж/ г. К

Решение: Интегральную теплоту растворения можно рассчитать по формуле:

Q = (C калорим. + С р-ра. m)× ΔТ/n,

где С - теплоемкость, n - количество растворенного вещества: n = m/M

m (р-ра) = 528,5 +1,473 = 530 г,

ΔТ = -0,174 о С,

Q = (4,109 × 530 + 181,4)×(-0,174)×53,5/ 1,473×1000 = -15,11 кДж/моль Из курса химической термодинамики известно, что мерой теплового эффекта химического процесса при изобарном процессе (постоянство давления в системе) является термодинамическая функция состояния – энтальпия

ΔН = Н кон. – Н нач. Тепловой эффект при этом равен по абсолютной величине энтальпии, но противоположен ей по знаку. Экзотермический процесс, сопровождающийся выделением тепла, соответствует –ΔН, а эндотермический, сопровождающийся поглощением тепла, соответствует +ΔН.Таким образом, в рассмотренной выше задаче процесс растворения хлорида аммония – эндотермический, ΔН = 15,11 кДж/моль.

Загрузка...